We present a hybrid system consisting of a superconducting coplanar waveguide resonator coupled to a nanomechanical string and a transmon qubit acting as nonlinear circuit element.We perform spectroscopy for both the transmon qubit and the nanomechanical string. Measuring the ac-Stark shift on the transmon qubit as well as the electromechanically induced absorption on the string allows us to determine the average photon number in the microwave resonator in both the low and high power regimes. In this way, we measure photon numbers that are up to nine orders of magnitude apart. We find a quantitative agreement between the calibration of photon numbers in the microwave resonator using the two methods. Our experiments demonstrate the successful combination of superconducting circuit quantum electrodynamics and nano-electromechanics on a single chip.
Josephson parametric amplifiers (JPA) have become key devices in quantum science and technology with superconducting circuits. In particular, they can be utilized as quantum-limitedamplifiers or as a source of squeezed microwave fields. Here, we report on the detailed measurements of five flux-driven JPAs, three of them exhibiting a hysteretic dependence of the resonant frequency versus the applied magnetic flux. We model the measured characteristics by numerical simulations based on the two-dimensional potential landscape of the dc superconducting quantum interference devices (dc-SQUID), which provide the JPA nonlinearity, for a finite screening parameter βL>0 and demonstrate excellent agreement between the numerical results and the experimental data. Furthermore, we study the nondegenerate response of different JPAs and accurately describe the experimental results with our theory.
We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. At millikelvintemperatures and low power, we find that the characteristic saturation power of two-level state (TLS) losses shows a pronounced temperature dependence. Furthermore, TLS losses can also be introduced by Nb/Al interfaces in the center conductor, when the interfaces are not positioned at current nodes of the resonator. In addition, we confirm that TLS losses can be reduced by proper surface treatment. For resonators including Al, quasiparticle losses become relevant above \SI{200}{\milli\kelvin}. Finally, we investigate how losses generated by eddy currents in the conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.
A superconducting qubit coupled to an open transmission line represents an implementation of the spin-boson model with a broadband environment. We show that this environment can beengineered by introducing partial reflectors into the transmission line, allowing to shape the spectral function, J({\omega}), of the spin-boson model. The spectral function can be accessed by measuring the resonance fluorescence of the qubit, which provides information on both the engineered environment and the coupling between qubit and transmission line. The spectral function of a transmission line without partial reflectors is found to be Ohmic over a wide frequency range, whereas a peaked spectral density is found for the shaped environment. Our work lays the ground for future quantum simulations of other, more involved, impurity models with superconducting circuits.