Single electron-spin-resonance detection by microwave photon counting

  1. Zhiren Wang,
  2. Léo Balembois,
  3. Milos Rančić,
  4. Eric Billaud,
  5. Marianne Le Dantec,
  6. Alban Ferrier,
  7. Philippe Goldner,
  8. Sylvain Bertaina,
  9. Thierry Chanelière,
  10. Daniel Estève,
  11. Denis Vion,
  12. Patrice Bertet,
  13. and Emmanuel Flurin
Electron spin resonance (ESR) spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing, but it
gives access only to ensemble-averaged quantities due to its limited signal-to-noise ratio. Single-electron-spin sensitivity has however been reached using spin-dependent photoluminescence, transport measurements, and scanning-probe techniques. These methods are system-specific or sensitive only in a small detection volume, so that practical single spin detection remains an open challenge. Here, we demonstrate single electron magnetic resonance by spin fluorescence detection, using a microwave photon counter at cryogenic temperatures. We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a high-quality factor planar superconducting resonator to enhance their radiative decay rate, with a signal-to-noise ratio of 1.9 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the spin radiative lifetime. The method has the potential to apply to arbitrary paramagnetic species with long enough non-radiative relaxation time, and allows single-spin detection in a volume as large as the resonator magnetic mode volume ( 10 um^3 in the present experiment), orders of magnitude larger than other single-spin detection techniques. As such, it may find applications in magnetic resonance and quantum computing.

Experimental demonstration of continuous quantum error correction

  1. William P. Livingston,
  2. Machiel S. Blok,
  3. Emmanuel Flurin,
  4. Justin Dressel,
  5. Andrew N. Jordan,
  6. and Irfan Siddiqi
The storage and processing of quantum information are susceptible to external noise, resulting in computational errors that are inherently continuous A powerful method to suppress these
effects is to use quantum error correction. Typically, quantum error correction is executed in discrete rounds where errors are digitized and detected by projective multi-qubit parity measurements. These stabilizer measurements are traditionally realized with entangling gates and projective measurement on ancillary qubits to complete a round of error correction. However, their gate structure makes them vulnerable to errors occurring at specific times in the code and errors on the ancilla qubits. Here we use direct parity measurements to implement a continuous quantum bit-flip correction code in a resource-efficient manner, eliminating entangling gates, ancilla qubits, and their associated errors. The continuous measurements are monitored by an FPGA controller that actively corrects errors as they are detected. Using this method, we achieve an average bit-flip detection efficiency of up to 91%. Furthermore, we use the protocol to increase the relaxation time of the protected logical qubit by a factor of 2.7 over the relaxation times of the bare comprising qubits. Our results showcase resource-efficient stabilizer measurements in a multi-qubit architecture and demonstrate how continuous error correction codes can address challenges in realizing a fault-tolerant system.

Detecting itinerant microwave photons with engineered non-linear dissipation

  1. Raphaël Lescanne,
  2. Samuel Deléglise,
  3. Emanuele Albertinale,
  4. Ulysse Réglade,
  5. Thibault Capelle,
  6. Edouard Ivanov,
  7. Thibaut Jacqmin,
  8. Zaki Leghtas,
  9. and Emmanuel Flurin
Single photon detection is a key resource for sensing at the quantum limit and the enabling technology for measurement based quantum computing. Photon detection at optical frequencies
relies on irreversible photo-assisted ionization of various natural materials. However, microwave photons have energies 5 orders of magnitude lower than optical photons, and are therefore ineffective at triggering measurable phenomena at macroscopic scales. Here, we report the observation of a new type of interaction between a single two level system (qubit) and a microwave resonator. These two quantum systems do not interact coherently, instead, they share a common dissipative mechanism to a cold bath: the qubit irreversibly switches to its excited state if and only if a photon enters the resonator. We have used this highly correlated dissipation mechanism to detect itinerant photons impinging on the resonator. This scheme does not require any prior knowledge of the photon waveform nor its arrival time, and dominant decoherence mechanisms do not trigger spurious detection events (dark counts). We demonstrate a detection efficiency of 58% and a record low dark count rate of 1.4 per ms. This work establishes engineered non-linear dissipation as a key-enabling resource for a new class of low-noise non-linear microwave detectors.

Using a Recurrent Neural Network to Reconstruct Quantum Dynamics of a Superconducting Qubit from Physical Observations

  1. Emmanuel Flurin,
  2. Leigh S. Martin,
  3. Shay Hacohen-Gourgy,
  4. and Irfan Siddiqi
At it’s core, Quantum Mechanics is a theory developed to describe fundamental observations in the spectroscopy of solids and gases. Despite these practical roots, however, quantum
theory is infamous for being highly counterintuitive, largely due to its intrinsically probabilistic nature. Neural networks have recently emerged as a powerful tool that can extract non-trivial correlations in vast datasets. They routinely outperform state-of-the-art techniques in language translation, medical diagnosis and image recognition. It remains to be seen if neural networks can be trained to predict stochastic quantum evolution without a priori specifying the rules of quantum theory. Here, we demonstrate that a recurrent neural network can be trained in real time to infer the individual quantum trajectories associated with the evolution of a superconducting qubit under unitary evolution, decoherence and continuous measurement from raw observations only. The network extracts the system Hamiltonian, measurement operators and physical parameters. It is also able to perform tomography of an unknown initial state without any prior calibration. This method has potential to greatly simplify and enhance tasks in quantum systems such as noise characterization, parameter estimation, feedback and optimization of quantum control.

Observing Topological Invariants Using Quantum Walk in Superconducting Circuits

  1. Emmanuel Flurin,
  2. Vinay V. Ramasesh,
  3. Shay Hacohen-Gourgy,
  4. Leigh S. Martin,
  5. Norman Y. Yao,
  6. and Irfan Siddiqi
The direct measurement of topological invariants in both engineered and naturally occurring quantum materials is a key step in classifying quantum phases of matter. Here we motivate
a toolbox based on time-dependent quantum walks as a method to digitally simulate single-particle topological band structures. Using a superconducting qubit dispersively coupled to a microwave cavity, we implement two classes of split-step quantum walks and directly measure the topological invariant (winding number) associated with each. The measurement relies upon interference between two components of a cavity Schr\“odinger cat state and highlights a novel refocusing technique which allows for the direct implementation of a digital version of Bloch oscillations. Our scheme can readily be extended to higher dimensions, whereby quantum walk-based simulations can probe topological phases ranging from the quantum spin Hall effect to the Hopf insulator.

Direct Probe of Topological Invariants Using Bloch Oscillating Quantum Walks

  1. Vinay V. Ramasesh,
  2. Emmanuel Flurin,
  3. Mark S. Rudner,
  4. Irfan Siddiqi,
  5. and Norman Y. Yao
The topology of a single-particle band structure plays a fundamental role in understanding a multitude of physical phenomena. Motivated by the connection between quantum walks and such
topological band structures, we demonstrate that a simple time-dependent, Bloch-oscillating quantum walk enables the direct measurement of topological invariants. We consider two classes of one-dimensional quantum walks and connect the global phase imprinted on the walker with its refocusing behavior. By disentangling the dynamical and geometric contributions to this phase we describe a general strategy to measure the topological invariant in these quantum walks. As an example, we propose an experimental protocol in a circuit QED architecture where a superconducting transmon qubit plays the role of the coin, while the quantum walk takes place in the phase space of a cavity.

Dynamics of simultaneously measured non-commuting observables

  1. Shay Hacohen-Gourgy,
  2. Leigh S. Martin,
  3. Emmanuel Flurin,
  4. Vinay V. Ramasesh,
  5. K. Birgitta Whaley,
  6. and Irfan Siddiqi
In quantum mechanics, measurement restores a classical notion of reality via collapse of the wavefunction, which yields a precisely defined outcome. On the other hand, the Heisenberg
uncertainty principle dictates that incompatible observables, such as position and momentum, cannot both take on arbitrarily precise values. But how does a wavefunction evolve when two such quantities are probed simultaneously, and how does the uncertainty principle dynamically inhibit precise measurement outcomes? To realize this unexplored regime, we simultaneously apply two continuous quantum non-demolition probes of non-commuting observables on a superconducting qubit. We achieve this capability by developing a novel measurement scheme that allows us to control the axes of multiple readout channels. We show that the uncertainty principle directly governs the dynamics of the state, and consequently standard wavefunction collapse is replaced by a persistent diffusion that exhibits several distinct regimes. Although evolution of the state now differs drastically from that of a conventional measurement, information about both non-commuting observables is extracted by keeping track of the time ordering of the measurement record, enabling quantum state tomography without alternating measurements. Our work creates new capabilities for quantum control, including rapid state purification, adaptive measurement, measurement-based state steering and continuous quantum error correction. As physical quantum systems interact with their environments via non-commuting degrees of freedom, our work offers a new, more natural approach to experimentally study contemporary quantum foundations.

Quantum dynamics of an electromagnetic mode that cannot contain N photons

  1. Landry Bretheau,
  2. Philippe Campagne-Ibarcq,
  3. Emmanuel Flurin,
  4. François Mallet,
  5. and Benjamin Huard
Electromagnetic modes are instrumental in building quantum machines. In this experiment, we introduce a method to manipulate these modes by effectively controlling their phase space.
Preventing access to a single energy level, corresponding to a number of photons N, confined the dynamics of the field to levels 0 to N-1. Under a resonant drive, the level occupation was found to oscillate in time, similarly to an N-level system. Performing a direct Wigner tomography of the field revealed its nonclassical features, including a Schr\“{o}dinger cat-like state at half period in the evolution. This fine control of the field in its phase space may enable applications in quantum information and metrology.

Superconducting quantum node for entanglement and storage of microwave radiation

  1. Emmanuel Flurin,
  2. Nicolas Roch,
  3. Jean-Damien Pillet,
  4. François Mallet,
  5. and Benjamin Huard
Superconducting circuits and microwave signals are good candidates to realize quantum networks, which are the backbone of quantum computers. We have realized a universal quantum node
based on a 3D microwave superconducting cavity parametrically coupled to a transmission line by a Josephson ring modulator. We first demonstrate the time-controlled capture, storage and retrieval of an optimally shaped propagating microwave field, with an efficiency as high as 80 %. We then demonstrate a second essential ability, which is the timed-controlled generation of an entangled state distributed between the node and a microwave channel.

Stabilizing the trajectory of a superconducting qubit by projective measurement feedback

  1. Philippe Campagne-Ibarcq,
  2. Emmanuel Flurin,
  3. Nicolas Roch,
  4. David Darson,
  5. Pascal Morfin,
  6. Mazyar Mirrahimi,
  7. Michel H. Devoret,
  8. Francois Mallet,
  9. and Benjamin Huard
Making a system state follow a prescribed trajectory despite fluctuations and errors commonly consists in monitoring an observable (temperature, blood-glucose level…) and reacting
on its controllers (heater power, insulin amount …). In the quantum domain, there is a change of paradigm in feedback since measurements modify the state of the system, most dramatically when the trajectory goes through superpositions of measurement eigenstates. Here, we demonstrate the stabilization of an arbitrary trajectory of a superconducting qubit by measurement based feedback. The protocol benefits from the long coherence time ($T_2>10 mu$s) of the 3D transmon qubit, the high efficiency (82%) of the phase preserving Josephson amplifier, and fast electronics ensuring less than 500 ns delay. At discrete time intervals, the state of the qubit is measured and corrected in case an error is detected. For Rabi oscillations, where the discrete measurements occur when the qubit is supposed to be in the measurement pointer states, we demonstrate an average fidelity of 85% to the targeted trajectory. For Ramsey oscillations, which does not go through pointer states, the average fidelity reaches 75%. Incidentally, we demonstrate a fast reset protocol allowing to cool a 3D transmon qubit down to 0.6% in the excited state.