Manipulating the electromagnetic spectrum at the single-photon level is fundamental for quantum experiments. In the visible and infrared range, this can be accomplished with atomicquantum emitters, and with superconducting qubits such control is extended to the microwave range (below 10 GHz). Meanwhile, the region between these two energy ranges presents an unexplored opportunity for innovation. We bridge this gap by scaling up a superconducting qubit to the millimeter-wave range (near 100 GHz). Working in this energy range greatly reduces sensitivity to thermal noise compared to microwave devices, enabling operation at significantly higher temperatures, up to 1 K. This has many advantages by removing the dependence on rare 3He for refrigeration, simplifying cryogenic systems, and providing orders of magnitude higher cooling power, lending the flexibility needed for novel quantum sensing and hybrid experiments. Using low-loss niobium trilayer junctions, we realize a qubit at 72 GHz cooled to 0.87 K using only 4He. We perform Rabi oscillations to establish control over the qubit state, and measure relaxation and dephasing times of 15.8 and 17.4 ns respectively. This demonstration of a millimeter-wave quantum emitter offers exciting prospects for enhanced sensitivity thresholds in high-frequency photon detection, provides new options for quantum transduction and for scaling up and speeding up quantum computing, enables integration of quantum systems where 3He refrigeration units are impractical, and importantly paves the way for quantum experiments exploring a novel energy range.
Engineering the Hamiltonian of a quantum system is fundamental to the design of quantum systems. Automating Hamiltonian design through gradient-based optimization can dramatically acceleratethis process. However, computing the gradients of eigenvalues and eigenvectors of a Hamiltonian–a large, sparse matrix–relative to system properties poses a significant challenge, especially for arbitrary systems. Superconducting quantum circuits offer substantial flexibility in Hamiltonian design, making them an ideal platform for this task. In this work, we present a comprehensive framework for the gradient-based optimization of superconducting quantum circuits, leveraging the SQcircuit software package. By addressing the challenge of calculating the gradient of the eigensystem for large, sparse Hamiltonians and integrating automatic differentiation within SQcircuit, our framework enables efficient and precise computation of gradients for various circuit properties or custom-defined metrics, streamlining the optimization process. We apply this framework to the qubit discovery problem, demonstrating its effectiveness in identifying qubit designs with superior performance metrics. The optimized circuits show improvements in a heuristic measure of gate count, upper bounds on gate speed, decoherence time, and resilience to noise and fabrication errors compared to existing qubits. While this methodology is showcased through qubit optimization and discovery, it is versatile and can be extended to tackle other optimization challenges in superconducting quantum hardware design.
We take a bottom-up, first-principles approach to design a two-qubit gate between fluxonium qubits for minimal error, speed, and control simplicity. Our proposed architecture consistsof two fluxoniums coupled via a linear resonator. Using a linear coupler introduces the possibility of material optimization for suppressing its loss, enables efficient driving of state-selective transitions through its large charge zero point fluctuation, reduces sensitivity to junction aging, and partially mitigates coherent coupling to two-level systems. Crucially, a resonator-as-coupler approach also suggests a clear path to increased connectivity between fluxonium qubits, by reducing capacitive loading when the coupler has a high impedance. After performing analytic and numeric analyses of the circuit Hamiltonian and gate dynamics, we tune circuit parameters to destructively interfere sources of coherent error, revealing an efficient, fourth-order scaling of coherent error with gate duration. For component properties from the literature, we predict an open-system average CZ gate infidelity of 1.86×10−4 in 70ns.
Group-V materials such as niobium and tantalum have become popular choices for extending the performance of circuit quantum electrodynamics (cQED) platforms allowing for quantum processorsand memories with reduced error rates and more modes. The complex surface chemistry of niobium however makes identifying the main modes of decoherence difficult at millikelvin temperatures and single-photon powers. We use niobium coaxial quarter-wave cavities to study the impact of etch chemistry, prolonged atmospheric exposure, and the significance of cavity conditions prior to and during cooldown, in particular niobium hydride evolution, on single-photon coherence. We demonstrate cavities with quality factors of Qint≳1.4×109 in the single-photon regime, a 15 fold improvement over aluminum cavities of the same geometry. We rigorously quantify the sensitivity of our fabrication process to various loss mechanisms and demonstrate a 2−4× reduction in the two-level system (TLS) loss tangent and a 3−5× improvement in the residual resistivity over traditional BCP etching techniques. Finally, we demonstrate transmon integration and coherent cavity control while maintaining a cavity coherence of \SI{11.3}{ms}. The accessibility of our method, which can easily be replicated in academic-lab settings, and the demonstration of its performance mark an advancement in 3D cQED.
Current state-of-the-art superconducting microwave qubits are cooled to extremely low temperatures to avoid sources of decoherence. Higher qubit operating temperatures would significantlyincrease the cooling power available, which is desirable for scaling up the number of qubits in quantum computing architectures and integrating qubits in experiments requiring increased heat dissipation. To operate superconducting qubits at higher temperatures, it is necessary to address both quasiparticle decoherence (which becomes significant for aluminum junctions above 160 mK) and dephasing from thermal microwave photons (which are problematic above 50 mK). Using low-loss niobium trilayer junctions, which have reduced sensitivity to quasiparticles due to niobium’s higher superconducting transition temperature, we fabricate transmons with higher frequencies than previously studied, up to 24 GHz. We measure decoherence and dephasing times of about 1 us, corresponding to average qubit quality factors of approximately 105, and find that decoherence is unaffected by quasiparticles up to 1 K. Without relaxation from quasiparticles, we are able to explore dephasing from purely thermal sources, finding that our qubits can operate up to approximately 250 mK while maintaining similar performance. The thermal resilience of these qubits creates new options for scaling up quantum processors, enables hybrid quantum experiments with high heat dissipation budgets, and introduces a material platform for even higher-frequency qubits.
Characterizing strongly correlated matter is an increasingly central challenge in quantum science, where structure is often obscured by massive entanglement. From semiconductor heterostructuresand 2D materials to synthetic atomic, photonic and ionic quantum matter, progress in preparation of manybody quantum states is accelerating, opening the door to new approaches to state characterization. It is becoming increasingly clear that in the quantum regime, state preparation and characterization should not be treated separately – entangling the two processes provides a quantum advantage in information extraction. From Loschmidt echo to measure the effect of a perturbation, to out-of-time-order-correlators (OTOCs) to characterize scrambling and manybody localization, to impurity interferometry to measure topological invariants, and even quantum Fourier transform-enhanced sensing, protocols that blur the distinction between state preparation and characterization are becoming prevalent. Here we present a new approach which we term ‚manybody Ramsey interferometry‘ that combines adiabatic state preparation and Ramsey spectroscopy: leveraging our recently-developed one-to-one mapping between computational-basis states and manybody eigenstates, we prepare a superposition of manybody eigenstates controlled by the state of an ancilla qubit, allow the superposition to evolve relative phase, and then reverse the preparation protocol to disentangle the ancilla while localizing phase information back into it. Ancilla tomography then extracts information about the manybody eigenstates, the associated excitation spectrum, and thermodynamic observables. This work opens new avenues for characterizing manybody states, paving the way for quantum computers to efficiently probe quantum matter.
The fluxonium qubit is a promising candidate for quantum computation due to its long coherence times and large anharmonicity. We present a tunable coupler that realizes strong inductivecoupling between two heavy-fluxonium qubits, each with ∼50MHz frequencies and ∼5 GHz anharmonicities. The coupler enables the qubits to have a large tuning range of XX coupling strengths (−35 to 75 MHz). The ZZ coupling strength is <3kHz across the entire coupler bias range, and <100Hz at the coupler off-position. These qualities lead to fast, high-fidelity single- and two-qubit gates. By driving at the difference frequency of the two qubits, we realize a iSWAP‾‾‾‾‾‾‾√ gate in 258ns with fidelity 99.72%, and by driving at the sum frequency of the two qubits, we achieve a bSWAP‾‾‾‾‾‾‾‾√ gate in 102ns with fidelity 99.91%. This latter gate is only 5 qubit Larmor periods in length. We run cross-entropy benchmarking for over 20 consecutive hours and measure stable gate fidelities, with bSWAP‾‾‾‾‾‾‾‾√ drift (2σ) <0.02% and iSWAP‾‾‾‾‾‾‾√ drift <0.08%.[/expand]
Niobium offers the benefit of increased operating temperatures and frequencies for Josephson junctions, which are the core component of superconducting devices. However existing niobiumprocesses are limited by more complicated fabrication methods and higher losses than now-standard aluminum junctions. Combining recent trilayer fabrication advancements, methods to remove lossy dielectrics and modern superconducting qubit design, we revisit niobium trilayer junctions and fabricate all-niobium transmons using only optical lithography. We characterize devices in the microwave domain, measuring coherence times up to 62 μs and an average qubit quality factor above 105: much closer to state-of-the-art aluminum-junction devices. We find the higher superconducting gap energy also results in reduced quasiparticle sensitivity above 0.16 K, where aluminum junction performance deteriorates. Our low-loss junction process is readily applied to standard optical-based foundry processes, opening new avenues for direct integration and scalability, and paves the way for higher-temperature and higher-frequency quantum devices.
Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computationalresources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities greater 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing.
Large-scale quantum computers will inevitably need quantum error correction to protect information against decoherence. Traditional error correction typically requires many qubits,along with high-efficiency error syndrome measurement and real-time feedback. Autonomous quantum error correction (AQEC) instead uses steady-state bath engineering to perform the correction in a hardware-efficient manner. We realize an AQEC scheme, implemented with only two transmon qubits in a 2D scalable architecture, that actively corrects single-photon loss and passively suppresses low-frequency dephasing using six microwave drives. Compared to uncorrected encoding, factors of 2.0, 5.1, and 1.4 improvements are experimentally witnessed for the logical zero, one, and superposition states. Our results show the potential of implementing hardware-efficient AQEC to enhance the reliability of a transmon-based quantum information processor.