Hybrid quantum devices expand the tools and techniques available for quantum sensing in various fields. Here, we experimentally demonstrate quantum sensing of the steady-state magnonpopulation in a magnetostatic mode of a ferrimagnetic crystal. Dispersively coupling the magnetostatic mode to a superconducting qubit allows the detection of magnons using Ramsey interferometry with a sensitivity on the order of 10−3 magnons/Hz−−−√. The protocol is based on dissipation as dephasing via fluctuations in the magnetostatic mode reduces the qubit coherence proportionally to the number of magnons.
We demonstrate fast two-qubit gates using a parity-violated superconducting qubit consisting of a capacitively-shunted asymmetric Josephson-junction loop under a finite magnetic fluxbias. The second-order nonlinearity manifesting in the qubit enables the interaction with a neighboring single-junction transmon qubit via first-order inter-qubit sideband transitions with Rabi frequencies up to 30~MHz. Simultaneously, the unwanted static longitudinal~(ZZ) interaction is eliminated with ac Stark shifts induced by a continuous microwave drive near-resonant to the sideband transitions. The average fidelities of the two-qubit gates are evaluated with randomized benchmarking as 0.967, 0.951, 0.956 for CZ, iSWAP and SWAP gates, respectively.
The rapid development in designs and fabrication techniques of superconducting qubits has helped making coherence times of qubits longer. In the near future, however, the radiativedecay of a qubit into its control line will be a fundamental limitation, imposing a trade-off between fast control and long lifetime of the qubit. In this work, we successfully break this trade-off by strongly coupling another superconducting qubit along the control line. This second qubit, which we call a Josephson quantum filter~(JQF), prevents the qubit from emitting microwave photons and thus suppresses its relaxation, while faithfully transmitting large-amplitude control microwave pulses due to the saturation of the quantum filter, enabling fast qubit control. We observe an improvement of the qubit relaxation time without a reduction of the Rabi frequency. This device could potentially help in the realization of a large-scale superconducting quantum information processor in terms of the heating of the qubit environments and the crosstalk between qubits.
The recent development of hybrid systems based on superconducting circuits has opened up the possibility of engineering sensors of quanta of different degrees of freedom. Quantum magnonics,which aims to control and read out quanta of collective spin excitations in magnetically-ordered systems, furthermore provides unique opportunities for advances in both the study of magnetism and the development of quantum technologies. Using a superconducting qubit as a quantum sensor, we report the detection of a single magnon in a millimeter-sized ferromagnetic crystal with a quantum efficiency of up to~0.71. The detection is based on the entanglement between a magnetostatic mode and the qubit, followed by a single-shot measurement of the qubit state. This proof-of-principle experiment establishes the single-photon detector counterpart for magnonics.
Engineered quantum systems enabling novel capabilities for communication, computation, and sensing have blossomed in the last decade. Architectures benefiting from combining distinctand complementary physical quantum systems have emerged as promising platforms for developing quantum technologies. A new class of hybrid quantum systems based on collective spin excitations in ferromagnetic materials has led to the diverse set of experimental platforms which are outlined in this review article. More specifically, the coherent interaction between microwave cavity modes and collective spin-wave modes is presented as the backbone of the development of more complex hybrid quantum systems. Indeed, quanta of excitation of the spin-wave modes, called magnons, can also interact coherently with optical photons, phonons, and superconducting qubits in the fields of cavity optomagnonics, cavity magnomechanics, and quantum magnonics, respectively. Notably, quantum magnonics provides a promising platform for performing quantum optics experiments in magnetically-ordered solid-state systems. Applications of hybrid quantum systems based on magnonics for quantum information processing and quantum sensing are also outlined briefly.
Collective excitation modes in solid state systems play a central role in circuit quantum electrodynamics, cavity optomechanics, and quantum magnonics. In the latter, quanta of collectiveexcitation modes in a ferromagnet, called magnons, interact with qubits to provide the nonlinearity necessary to access quantum phenomena in magnonics. A key ingredient for future quantum magnonics systems is the ability to probe magnon states. Here we observe individual magnons in a millimeter-sized ferromagnet coherently coupled to a superconducting qubit. Specifically, we resolve magnon number states in spectroscopic measurements of a transmon qubit with the hybrid system in the strong dispersive regime. This enables us to detect a change in the magnetic dipole of the ferromagnet equivalent to a single spin flipped among more than 1019 spins. The strong dispersive regime of quantum magnonics opens up the possibility of encoding superconducting qubits into non-classical magnon states, potentially providing a coherent interface between a superconducting quantum processor and optical photons.