Systematic Construction of Time-Dependent Hamiltonians for Microwave-Driven Josephson Circuits

  1. Yao Lu,
  2. Tianpu Zhao,
  3. André Vallières,
  4. Kevin C. Smith,
  5. Daniel Weiss,
  6. Xinyuan You,
  7. Yaxing Zhang,
  8. Suhas Ganjam,
  9. Aniket Maiti,
  10. John W.O. Garmon,
  11. Shantanu Mundhada,
  12. Ziwen Huang,
  13. Ian Mondragon-Shem,
  14. Steven M. Girvin,
  15. Jens Koch,
  16. and Robert J. Schoelkopf
Time-dependent electromagnetic drives are fundamental for controlling complex quantum systems, including superconducting Josephson circuits. In these devices, accurate time-dependent
Hamiltonian models are imperative for predicting their dynamics and designing high-fidelity quantum operations. Existing numerical methods, such as black-box quantization (BBQ) and energy-participation ratio (EPR), excel at modeling the static Hamiltonians of Josephson circuits. However, these techniques do not fully capture the behavior of driven circuits stimulated by external microwave drives, nor do they include a generalized approach to account for the inevitable noise and dissipation that enter through microwave ports. Here, we introduce novel numerical techniques that leverage classical microwave simulations that can be efficiently executed in finite element solvers, to obtain the time-dependent Hamiltonian of a microwave-driven superconducting circuit with arbitrary geometries. Importantly, our techniques do not rely on a lumped-element description of the superconducting circuit, in contrast to previous approaches to tackling this problem. We demonstrate the versatility of our approach by characterizing the driven properties of realistic circuit devices in complex electromagnetic environments, including coherent dynamics due to charge and flux modulation, as well as drive-induced relaxation and dephasing. Our techniques offer a powerful toolbox for optimizing circuit designs and advancing practical applications in superconducting quantum computing.

Universal fast flux control of a coherent, low-frequency qubit

  1. Helin Zhang,
  2. Srivatsan Chakram,
  3. Tanay Roy,
  4. Nathan Earnest,
  5. Yao Lu,
  6. Ziwen Huang,
  7. Daniel Weiss,
  8. Jens Koch,
  9. and David I. Schuster
The extit{heavy-fluxonium} circuit is a promising building block for superconducting quantum processors due to its long relaxation and dephasing time at the half-flux frustration
point. However, the suppressed charge matrix elements and low transition frequency have made it challenging to perform fast single-qubit gates using standard protocols. We report on new protocols for reset, fast coherent control, and readout, that allow high-quality operation of the qubit with a 14 MHz transition frequency, an order of magnitude lower in energy than the ambient thermal energy scale. We utilize higher levels of the fluxonium to initialize the qubit with 97\% fidelity, corresponding to cooling it to 190 μK. We realize high-fidelity control using a universal set of single-cycle flux gates, which are comprised of directly synthesizable fast pulses, while plasmon-assisted readout is used for measurements. On a qubit with T1,T2e∼~300~μs, we realize single-qubit gates in 20−60~ns with an average gate fidelity of 99.8% as characterized by randomized benchmarking.