A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is todesign a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.
We demonstrate and contrast two approaches to the stabilization of qubit entanglement by feedback. Our demonstration is built on a feedback platform consisting of two superconductingqubits coupled to a cavity which are measured by a nearly-quantum-limited measurement chain and controlled by high-speed classical logic circuits. This platform is used to stabilize entanglement by two nominally distinct schemes: a „passive“ reservoir engineering method and an „active“ correction based on conditional parity measurements. In view of the instrumental roles that these two feedback paradigms play in quantum error-correction and quantum control, we directly compare them on the same experimental setup. Further, we show that a second layer of feedback can be added to each of these schemes, which heralds the presence of a high-fidelity entangled state in realtime. This „nested“ feedback brings about a marked entanglement fidelity improvement without sacrificing success probability.
Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only when they are sufficiently decoupled from a lossy environment. Paradoxically, a speciallyengineered interaction with the environment can become a resource for the generation and protection of quantum states. This notion can be generalized to the confinement of a system into a manifold of quantum states, consisting of all coherent superpositions of multiple stable steady states. We have experimentally confined the state of a harmonic oscillator to the quantum manifold spanned by two coherent states of opposite phases. In particular, we have observed a Schrodinger cat state spontaneously squeeze out of vacuum, before decaying into a classical mixture. This was accomplished by designing a superconducting microwave resonator whose coupling to a cold bath is dominated by photon pair exchange. This experiment opens new avenues in the fields of nonlinear quantum optics and quantum information, where systems with multi-dimensional steady state manifolds can be used as error corrected logical qubits.