Three-dimensional microwave cavity resonators have been shown to reach lifetimes of the order of a second by maximizing the cavity volume relative to its surface, using better materials,and improving surface treatments. Such cavities represent an ideal platform for quantum computing with bosonic qubits, but their efficient control remains an outstanding problem since the large mode volume results in inefficient coupling to nonlinear elements used for their control. Moreover, this coupling induces additional cavity decay via the inverse Purcell effect which can easily destroy the advantage of {a} long intrinsic lifetime. Here, we discuss conditions on, and protocols for, efficient utilization of these ultra-high-quality microwave cavities as memories for conventional superconducting qubits. We show that, surprisingly, efficient write and read operations with ultra-high-quality cavities does not require similar quality factors for the qubits and other nonlinear elements used to control them. Through a combination of analytical and numerical calculations, we demonstrate that efficient coupling to cavities with second-scale lifetime is possible with state-of-the-art transmon and SNAIL devices and outline a route towards controlling cavities with even higher quality factors. Our work explores a potentially viable roadmap towards using ultra-high-quality microwave cavity resonators for storing and processing information encoded in bosonic qubits.
A critical challenge in developing scalable error-corrected quantum systems is the accumulation of errors while performing operations and measurements. One promising approach is todesign a system where errors can be detected and converted into erasures. A recent proposal aims to do this using a dual-rail encoding with superconducting cavities. In this work, we implement such a dual-rail cavity qubit and use it to demonstrate a projective logical measurement with erasure detection. We measure logical state preparation and measurement errors at the 0.01%-level and detect over 99% of cavity decay events as erasures. We use the precision of this new measurement protocol to distinguish different types of errors in this system, finding that while decay errors occur with probability ∼0.2% per microsecond, phase errors occur 6 times less frequently and bit flips occur at least 170 times less frequently. These findings represent the first confirmation of the expected error hierarchy necessary to concatenate dual-rail erasure qubits into a highly efficient erasure code.
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approachfor implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (∼ 100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities‘ joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
The design of quantum hardware that reduces and mitigates errors is essential for practical quantum error correction (QEC) and useful quantum computations. To this end, we introducethe circuit-QED dual-rail qubit in which our physical qubit is encoded in the single-photon subspace of two superconducting cavities. The dominant photon loss errors can be detected and converted into erasure errors, which are much easier to correct. In contrast to linear optics, a circuit-QED implementation of the dual-rail code offers completely new capabilities. Using a single transmon ancilla, we describe a universal gate set that includes state preparation, logical readout, and parametrizable single and two-qubit gates. Moreover, first-order hardware errors due to the cavity and transmon in all of these operations can be detected and converted to erasure errors, leaving background Pauli errors that are orders of magnitude smaller. Hence, the dual-rail cavity qubit delivers an optimal hierarchy of errors and rates, and is expected to be well below the relevant QEC thresholds with today’s devices.