Quantum random access memory with transmon-controlled phonon routing

  1. Zhaoyou Wang,
  2. Hong Qiao,
  3. Andrew N. Cleland,
  4. and Liang Jiang
Quantum random access memory (QRAM) promises simultaneous data queries at multiple memory locations, with data retrieved in coherent superpositions, essential for achieving quantum
speedup in many quantum algorithms. We introduce a transmon-controlled phonon router and propose a QRAM implementation by connecting these routers in a tree-like architecture. The router controls the motion of itinerant surface acoustic wave phonons based on the state of the control transmon, implementing the core functionality of conditional routing for QRAM. Our QRAM design is compact, supports fast routing operations, and avoids frequency crowding. Additionally, we propose a hybrid dual-rail encoding method to detect dominant loss errors without additional hardware, a versatile approach applicable to other QRAM platforms. Our estimates indicate that the proposed QRAM platform can achieve high heralding rates using current device parameters, with heralding fidelity primarily limited by transmon dephasing.

Modular quantum processor with an all-to-all reconfigurable router

  1. Xuntao Wu,
  2. Haoxiong Yan,
  3. Gustav Andersson,
  4. Alexander Anferov,
  5. Ming-Han Chou,
  6. Christopher R. Conner,
  7. Joel Grebel,
  8. Yash J. Joshi,
  9. Shiheng Li,
  10. Jacob M. Miller,
  11. Rhys G. Povey,
  12. Hong Qiao,
  13. and Andrew N. Cleland
Superconducting qubits provide a promising approach to large-scale fault-tolerant quantum computing. However, qubit connectivity on a planar surface is typically restricted to only
a few neighboring qubits. Achieving longer-range and more flexible connectivity, which is particularly appealing in light of recent developments in error-correcting codes, however usually involves complex multi-layer packaging and external cabling, which is resource-intensive and can impose fidelity limitations. Here, we propose and realize a high-speed on-chip quantum processor that supports reconfigurable all-to-all coupling with a large on-off ratio. We implement the design in a four-node quantum processor, built with a modular design comprising a wiring substrate coupled to two separate qubit-bearing substrates, each including two single-qubit nodes. We use this device to demonstrate reconfigurable controlled-Z gates across all qubit pairs, with a benchmarked average fidelity of 96.00%±0.08% and best fidelity of 97.14%±0.07%, limited mainly by dephasing in the qubits. We also generate multi-qubit entanglement, distributed across the separate modules, demonstrating GHZ-3 and GHZ-4 states with fidelities of 88.15%±0.24% and 75.18%±0.11%, respectively. This approach promises efficient scaling to larger-scale quantum circuits, and offers a pathway for implementing quantum algorithms and error correction schemes that benefit from enhanced qubit connectivity.

Broadband Bandpass Purcell Filter for Circuit Quantum Electrodynamics

  1. Haoxiong Yan,
  2. Xuntao Wu,
  3. Andrew Lingenfelter,
  4. Yash J. Joshi,
  5. Gustav Andersson,
  6. Christopher R. Conner,
  7. Ming-Han Chou,
  8. Joel Grebel,
  9. Jacob M. Miller,
  10. Rhys G. Povey,
  11. Hong Qiao,
  12. Aashish A. Clerk,
  13. and Andrew N. Cleland
In circuit quantum electrodynamics (QED), qubits are typically measured using dispersively-coupled readout resonators. Coupling between each readout resonator and its electrical environment
however reduces the qubit lifetime via the Purcell effect. Inserting a Purcell filter counters this effect while maintaining high readout fidelity, but reduces measurement bandwidth and thus limits multiplexing readout capacity. In this letter, we develop and implement a multi-stage bandpass Purcell filter that yields better qubit protection while simultaneously increasing measurement bandwidth and multiplexed capacity. We report on the experimental performance of our transmission-line–based implementation of this approach, a flexible design that can easily be integrated with current scaled-up, long coherence time superconducting quantum processors.

Low-loss interconnects for modular superconducting quantum processors

  1. Jingjing Niu,
  2. Libo Zhang,
  3. Yang Liu,
  4. Jiawei Qiu,
  5. Wenhui Huang,
  6. Jiaxiang Huang,
  7. Hao Jia,
  8. Jiawei Liu,
  9. Ziyu Tao,
  10. Weiwei Wei,
  11. Yuxuan Zhou,
  12. Wanjing Zou,
  13. Yuanzhen Chen,
  14. Xiaowei Deng,
  15. Xiuhao Deng,
  16. Changkang Hu,
  17. Ling Hu,
  18. Jian Li,
  19. Dian Tan,
  20. Yuan Xu,
  21. Fei Yan,
  22. Tongxing Yan,
  23. Song Liu,
  24. Youpeng Zhong,
  25. Andrew N. Cleland,
  26. and Dapeng Yu
Scaling is now a key challenge in superconducting quantum computing. One solution is to build modular systems in which smaller-scale quantum modules are individually constructed and
calibrated, and then assembled into a larger architecture. This, however, requires the development of suitable interconnects. Here, we report low-loss interconnects based on pure aluminium coaxial cables and on-chip impedance transformers featuring quality factors up to 8.1×105, which is comparable to the performance of our transmon qubits fabricated on single-crystal sapphire substrate. We use these interconnects to link five quantum modules with inter-module quantum state transfer and Bell state fidelities up to 99\%. To benchmark the overall performance of the processor, we create maximally-entangled, multi-qubit Greenberger-Horne-Zeilinger (GHZ) states. The generated inter-module four-qubit GHZ state exhibits 92.0\% fidelity. We also entangle up to 12 qubits in a GHZ state with 55.8±1.8% fidelity, which is above the genuine multipartite entanglement threshold of 1/2. These results represent a viable modular approach for large-scale superconducting quantum processors.

Entanglement purification and protection in a superconducting quantum network

  1. Haoxiong Yan,
  2. Youpeng Zhong,
  3. Hung-Shen Chang,
  4. Audrey Bienfait,
  5. Ming-Han Chou,
  6. Christopher R. Conner,
  7. Étienne Dumur,
  8. Joel Grebel,
  9. Rhys G. Povey,
  10. and Andrew N. Cleland
High-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption.
Any sources of decoherence in the communication channel however degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these non-idealities, by distilling impure states into higher-fidelity entangled states. Here we demonstrate the entanglement purification of Bell pairs shared between two remote superconducting quantum nodes connected by a moderately lossy, 1-meter long superconducting communication cable. We use a purification process to correct the dominant amplitude damping errors caused by transmission through the cable, with fractional increases in fidelity as large as 25%, achieved for higher damping errors. The best final fidelity the purification achieves is 94.09±0.98%. In addition, we use both dynamical decoupling and Rabi driving to protect the entangled states from local noise, increasing the effective qubit dephasing time by a factor of 4, from 3 μs to 12 μs. These methods demonstrate the potential for the generation and preservation of very high-fidelity entanglement in a superconducting quantum communication network.

Deterministic multi-qubit entanglement in a quantum network

  1. Youpeng Zhong,
  2. Hung-Shen Chang,
  3. Audrey Bienfait,
  4. Étienne Dumur,
  5. Ming-Han Chou,
  6. Christopher R. Conner,
  7. Joel Grebel,
  8. Rhys G. Povey,
  9. Haoxiong Yan,
  10. David I. Schuster,
  11. and Andrew N. Cleland
Quantum entanglement is a key resource for quantum computation and quantum communication cite{Nielsen2010}. Scaling to large quantum communication or computation networks further requires
the deterministic generation of multi-qubit entanglement \cite{Gottesman1999,Duan2001,Jiang2007}. The deterministic entanglement of two remote qubits has recently been demonstrated with microwave photons \cite{Kurpiers2018,Axline2018,Campagne2018,Leung2019,Zhong2019}, optical photons \cite{Humphreys2018} and surface acoustic wave phonons \cite{Bienfait2019}. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily due to limited state transfer fidelities. Here, we report a quantum network comprising two separate superconducting quantum nodes connected by a 1 meter-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the coaxial cable to one qubit in each node, we can transfer quantum states between the nodes with a process fidelity of 0.911±0.008. Using the high-fidelity communication link, we can prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state \cite{Greenberger1990,Neeley2010,Dicarlo2010} in one node and deterministically transfer this state to the other node, with a transferred state fidelity of 0.656±0.014. We further use this system to deterministically generate a two-node, six-qubit GHZ state, globally distributed within the network, with a state fidelity of 0.722±0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement \cite{Guhne2010}, and show that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers \cite{Monroe2014,Chou2018}.

A fast and large bandwidth superconducting variable coupler

  1. Hung-Shen Chang,
  2. Kevin J. Satzinger,
  3. Youpeng Zhong,
  4. Audrey Bienfait,
  5. Ming-Han Chou,
  6. Christopher R. Conner,
  7. Étienne Dumur,
  8. Joel Grebel,
  9. Gregory A. Peairs,
  10. Rhys G. Povey,
  11. and Andrew N. Cleland
Variable microwave-frequency couplers are highly useful components in classical communication systems, and likely will play an important role in quantum communication applications.
Conventional semiconductor-based microwave couplers have been used with superconducting quantum circuits, enabling for example the in situ measurements of multiple devices via a common readout chain. However, the semiconducting elements are lossy, and furthermore dissipate energy when switched, making them unsuitable for cryogenic applications requiring rapid, repeated switching. Superconducting Josephson junction-based couplers can be designed for dissipation-free operation with fast switching and are easily integrated with superconducting quantum circuits. These enable on-chip, quantum-coherent routing of microwave photons, providing an appealing alternative to semiconductor switches. Here, we present and characterize a chip-based broadband microwave variable coupler, tunable over 4-8 GHz with over 1.5 GHz instantaneous bandwidth, based on the superconducting quantum interference device (SQUID) with two parallel Josephson junctions. The coupler is dissipation-free, features large on-off ratios in excess of 40 dB, and the coupling can be changed in about 10 ns. The simple design presented here can be readily integrated with superconducting qubit circuits, and can be easily generalized to realize a four- or more port device.

Quantum erasure using entangled surface acoustic phonons

  1. Audrey Bienfait,
  2. Youpeng Zhong,
  3. Hung-Shen Chang,
  4. Ming-Han Chou,
  5. Christopher R. Conner,
  6. Étienne Dumur,
  7. Joel Grebel,
  8. Gregory A. Peairs,
  9. Rhys G. Povey,
  10. Kevin J. Satzinger,
  11. and Andrew N. Cleland
Using the deterministic, on-demand generation of two entangled phonons, we demonstrate a quantum eraser protocol in a phononic interferometer where the which-path information can be
heralded during the interference process. Omitting the heralding step yields a clear interference pattern in the interfering half-quanta pathways; including the heralding step suppresses this pattern. If we erase the heralded information after the interference has been measured, the interference pattern is recovered, thereby implementing a delayed-choice quantum erasure. The test is implemented using a closed surface-acoustic-wave communication channel into which one superconducting qubit can emit itinerant phonons that the same or a second qubit can later re-capture. If the first qubit releases only half of a phonon, the system follows a superposition of paths during the phonon propagation: either an itinerant phonon is in the channel, or the first qubit remains in its excited state. These two paths are made to constructively or destructively interfere by changing the relative phase of the two intermediate states, resulting in a phase-dependent modulation of the first qubit’s final state, following interaction with the half-phonon. A heralding mechanism is added to this construct, entangling a heralding phonon with the signalling phonon. The first qubit emits a phonon herald conditioned on the qubit being in its excited state, with no signaling phonon, and the second qubit catches this heralding phonon, storing which-path information which can either be read out, destroying the signaling phonon’s self-interference, or erased.

Sputtered TiN films for superconducting coplanar waveguide resonators

  1. Shinobu Ohya,
  2. Ben Chiaro,
  3. Anthony Megrant,
  4. Charles Neill,
  5. Rami Barends,
  6. Yu Chen,
  7. Julian Kelly,
  8. David Low,
  9. Josh Mutus,
  10. Peter O'Malley,
  11. Pedram Roushan,
  12. Daniel Sank,
  13. Amit Vainsencher,
  14. James Wenner,
  15. Theodore C. White,
  16. Yi Yin,
  17. B. D. Schultz,
  18. Chris J Palmstrøm,
  19. Benjamin A. Mazin,
  20. Andrew N. Cleland,
  21. and John M. Martinis
We present a systematic study of the properties of TiN films by varying the deposition conditions in an ultra-high-vacuum reactive magnetron sputtering chamber. By increasing the deposition
pressure from 2 to 9 mTorr while keeping a nearly stoichiometric composition of Ti(1-x)N(x) (x=0.5), the film resistivity increases, the dominant crystal orientation changes from (100) to (111), grain boundaries become clearer, and the strong compressive strain changes to weak tensile strain. The TiN films absorb a high concentration of contaminants including hydrogen, carbon, and oxygen when they are exposed to air after deposition. With the target-substrate distance set to 88 mm the contaminant levels increase from ~0.1% to ~10% as the pressure is increased from 2 to 9 mTorr. The contaminant concentrations also correlate with in-plane distance from the center of the substrate and increase by roughly two orders of magnitude as the target-substrate distance is increased from 88 mm to 266 mm. These contaminants are found to strongly influence the properties of TiN films. For instance, the resistivity of stoichiometric films increases by around a factor of 5 as the oxygen content increases from 0.1% to 11%. These results suggest that the sputtered TiN particle energy is critical in determining the TiN film properties, and that it is important to control this energy to obtain high-quality TiN films. Superconducting coplanar waveguide resonators made from a series of nearly stoichiometric films grown at pressures from 2 mTorr to 7 mTorr show an increase in intrinsic quality factor from ~10^4 to ~10^6 as the magnitude of the compressive strain decreases from nearly 3800 MPa to approximately 150 MPa and the oxygen content increases from 0.1% to 8%. The films with a higher oxygen content exhibit lower loss, but the nonuniformity of the oxygen incorporation hinders the use of sputtered TiN in larger circuits.

Computing prime factors with a Josephson phase qubit quantum processor

  1. Erik Lucero,
  2. Rami Barends,
  3. Yu Chen,
  4. Julian Kelly,
  5. Matteo Mariantoni,
  6. Anthony Megrant,
  7. Peter O'Malley,
  8. Daniel Sank,
  9. Amit Vainsencher,
  10. James Wenner,
  11. Ted White,
  12. Yi Yin,
  13. Andrew N. Cleland,
  14. and John M. Martinis
. Compiled versions of Shor’s algorithm have been demonstrated"]on ensemble quantum systems[2] and photonic systems[3-5], however this has yet to be shown using solid state quantum bits (qubits). Two advantages of superconducting qubit architectures are the use of conventional microfabrication techniques, which allow straightforward scaling to large numbers of qubits, and a toolkit of circuit elements that can be used to engineer a variety of qubit types and interactions[6, 7]. Using a number of recent qubit control and hardware advances [7-13], here we demonstrate a nine-quantum-element solid-state QuP and show three experiments to highlight its capabilities. We begin by characterizing the device with spectroscopy. Next, we produces coherent interactions between five qubits and verify bi- and tripartite entanglement via quantum state tomography (QST) [8, 12, 14, 15]. In the final experiment, we run a three-qubit compiled version of Shor’s algorithm to factor the number 15, and successfully find the prime factors 48% of the time. Improvements in the superconducting qubit coherence times and more complex circuits should provide the resources necessary to factor larger composite numbers and run more intricate quantum algorithms.