Driving a Josephson Traveling Wave Parametric Amplifier into chaos: effects of a non-sinusoidal current-phase relation

  1. Claudio Guarcello,
  2. Carlo Barone,
  3. Giovanni Carapella,
  4. Veronica Granata,
  5. Giovanni Filatrella,
  6. Andrea Giachero,
  7. and Sergio Pagano
In this work, we develop a comprehensive numerical analysis of the dynamic response of a Josephson Traveling Wave Parametric Amplifier (JTWPA) by varying the driving parameters, with

Spectroscopic measurements and models of energy deposition in the substrate of quantum circuits by natural ionizing radiation

  1. Joseph W. Fowler,
  2. Paul Szypryt,
  3. Raymond Bunker,
  4. Ellen R. Edwards,
  5. Ian Fogarty Florang,
  6. Jiansong Gao,
  7. Andrea Giachero,
  8. Shannon F. Hoogerheide,
  9. Ben Loer,
  10. H. Pieter Mumm,
  11. Nathan Nakamura,
  12. Galen C. O'Neil,
  13. John L. Orrell,
  14. Elizabeth M. Scott,
  15. Jason Stevens,
  16. Daniel S. Swetz,
  17. Brent A. VanDevender,
  18. Michael Vissers,
  19. and Joel N. Ullom
Naturally occurring background radiation is a source of correlated decoherence events in superconducting qubits that will challenge error-correction schemes. To characterize the radiationenvironment in an unshielded laboratory, we performed broadband, spectroscopic measurements of background events in silicon substrates located inside a millikelvin refrigerator, an environment representative of superconducting qubit systems. We measured the background spectra in silicon substrates of two thicknesses, 0.5 mm and 1.5 mm, and obtained the average event rate and the integrated power deposition. In a 25 mm^2 area and the thinner substrate, these values are 0.023 events per second and 4.9 keV/s, counting events that deposit at least 40 keV. We find the background spectrum to be nearly featureless. Its intensity decreases by a factor of 40,000 between 100 keV and 3 MeV for silicon substrates 0.5 mm thick. We find the cryogenic measurements to be in good agreement with predictions based on measurements of the terrestrial gamma-ray flux, published models of cosmic-ray fluxes, a crude model of the cryostat, and radiation-transport simulations. No free parameters are required to predict the background spectra in the silicon substrates. The good agreement between measurements and predictions allow assessment of the relative contributions of terrestrial and cosmic background sources and their dependence on substrate thickness. Our spectroscopic measurements are performed with superconducting microresonators that transduce deposited energy to a readily detectable electrical signal. We find that gamma-ray emissions from radioisotopes are responsible for the majority of events depositing E<1.5 MeV, while nucleons among the cosmic-ray secondary particles cause most events that deposit more energy. These results suggest several paths to reducing the impact of background radiation on quantum circuits.[/expand]

Broadband parametric amplification in DARTWARS

  1. Felix Ahrens,
  2. Elena Ferri,
  3. Guerino Avallone,
  4. Carlo Barone,
  5. Matteo Borghesi,
  6. Luca Callegaro,
  7. Giovanni Carapella,
  8. Anna Paola Caricato,
  9. Iacopo Carusotto,
  10. Alessandro Cian,
  11. Alessandro D'Elia,
  12. Daniele Di Gioacchino,
  13. Emanuele Enrico,
  14. Paolo Falferi,
  15. Luca Fasolo,
  16. Marco Faverzani,
  17. Giovanni Filatrella,
  18. Claudio Gatti,
  19. Andrea Giachero,
  20. Damiano Giubertoni,
  21. Veronica Granata,
  22. Claudio Guarcello,
  23. Danilo Labranca,
  24. Angelo Leo,
  25. Carlo Ligi,
  26. Giovanni Maccarrone,
  27. Federica Mantegazzini,
  28. Benno Margesin,
  29. Giuseppe Maruccio,
  30. Renato Mezzena,
  31. Anna Grazia Monteduro,
  32. Roberto Moretti,
  33. Angelo Nucciotti,
  34. Luca Oberto,
  35. Luca Origo,
  36. Sergio Pagano,
  37. Alex Stephane Piedjou,
  38. Luca Piersanti,
  39. Alessio Rettaroli,
  40. Silvia Rizzato,
  41. Simone Tocci,
  42. Andrea Vinante,
  43. and Mario Zannoni
Superconducting parametric amplifiers offer the capability to amplify feeble signals with extremely low levels of added noise, potentially reaching quantum-limited amplification. This

Development of KI-TWPAs for the DARTWARS project

  1. Felix Ahrens,
  2. Elena Ferri,
  3. Guerino Avallone,
  4. Carlo Barone,
  5. Matteo Borghesi,
  6. Luca Callegaro,
  7. Giovanni Carapella,
  8. Anna Paola Caricato,
  9. Iacopo Carusotto,
  10. Alessandro Cian,
  11. Alessandro D'Elia,
  12. Daniele Di Gioacchino,
  13. Emanuele Enrico,
  14. Paolo Falferi,
  15. Luca Fasolo,
  16. Marco Faverzani,
  17. Giovanni Filatrella,
  18. Claudio Gatti,
  19. Andrea Giachero,
  20. Damiano Giubertoni,
  21. Veronica Granata,
  22. Claudio Guarcello,
  23. Danilo Labranca,
  24. Angelo Leo,
  25. Carlo Ligi,
  26. Giovanni Maccarrone,
  27. Federica Mantegazzini,
  28. Benno Margesin,
  29. Giuseppe Maruccio,
  30. Renato Mezzena,
  31. Anna Grazia Monteduro,
  32. Roberto Moretti,
  33. Angelo Nucciotti,
  34. Luca Oberto,
  35. Luca Origo,
  36. Sergio Pagano,
  37. Alex Stephane Piedjou,
  38. Luca Piersanti,
  39. Alessio Rettaroli,
  40. Silvia Rizzato,
  41. Simone Tocci,
  42. Andrea Vinante,
  43. and Mario Zannoni
Noise at the quantum limit over a broad bandwidth is a fundamental requirement for future cryogenic experiments for neutrino mass measurements, dark matter searches and Cosmic Microwave

Characterization of a Transmon Qubit in a 3D Cavity for Quantum Machine Learning and Photon Counting

  1. Alessandro D'Elia,
  2. Boulos Alfakes,
  3. Anas Alkhazaleh,
  4. Leonardo Banchi,
  5. Matteo Beretta,
  6. Stefano Carrazza,
  7. Fabio Chiarello,
  8. Daniele Di Gioacchino,
  9. Andrea Giachero,
  10. Felix Henrich,
  11. Alex Stephane Piedjou Komnang,
  12. Carlo Ligi,
  13. Giovanni Maccarrone,
  14. Massimo Macucci,
  15. Emanuele Palumbo,
  16. Andrea Pasquale,
  17. Luca Piersanti,
  18. Florent Ravaux,
  19. Alessio Rettaroli,
  20. Matteo Robbiati,
  21. Simone Tocci,
  22. and Claudio Gatti
In this paper we report the use of superconducting transmon qubit in a 3D cavity for quantum machine learning and photon counting applications. We first describe the realization and

Quantum Sensing with superconducting qubits for Fundamental Physics

  1. Roberto Moretti,
  2. Hervè Atsè Corti,
  3. Danilo Labranca,
  4. Felix Ahrens,
  5. Guerino Avallone,
  6. Danilo Babusci,
  7. Leonardo Banchi,
  8. Carlo Barone,
  9. Matteo Mario Beretta,
  10. Matteo Borghesi,
  11. Bruno Buonomo,
  12. Enrico Calore,
  13. Giovanni Carapella,
  14. Fabio Chiarello,
  15. Alessandro Cian,
  16. Alessando Cidronali,
  17. Filippo Costa,
  18. Alessandro Cuccoli,
  19. Alessandro D'Elia,
  20. Daniele Di Gioacchino,
  21. Stefano Di Pascoli,
  22. Paolo Falferi,
  23. Marco Fanciulli,
  24. Marco Faverzani,
  25. Giulietto Felici,
  26. Elena Ferri,
  27. Giovanni Filatrella,
  28. Luca Gennaro Foggetta,
  29. Claudio Gatti,
  30. Andrea Giachero,
  31. Francesco Giazotto,
  32. Damiano Giubertoni,
  33. Veronica Granata,
  34. Claudio Guarcello,
  35. Gianluca Lamanna,
  36. Carlo Ligi,
  37. Giovanni Maccarrone,
  38. Massimo Macucci,
  39. Giuliano Manara,
  40. Federica Mantegazzini,
  41. Paolo Marconcini,
  42. Benno Margesin,
  43. Francesco Mattioli,
  44. Andrea Miola,
  45. Angelo Nucciotti,
  46. Luca Origo,
  47. Sergio Pagano,
  48. Federico Paolucci,
  49. Luca Piersanti,
  50. Alessio Rettaroli,
  51. Stefano Sanguinetti,
  52. Sebastiano Fabio Schifano,
  53. Paolo Spagnolo,
  54. Simone Tocci,
  55. Alessandra Toncelli,
  56. Guido Torrioli,
  57. and Andrea Vinante
Quantum Sensing is a rapidly expanding research field that finds one of its applications in Fundamental Physics, as the search for Dark Matter. Recent developments in the fabrication