Quantum computing becomes viable when a quantum state can be preserved from environmentally-induced error. If quantum bits (qubits) are sufficiently reliable, errors are sparse andquantum error correction (QEC) is capable of identifying and correcting them. Adding more qubits improves the preservation by guaranteeing increasingly larger clusters of errors will not cause logical failure – a key requirement for large-scale systems. Using QEC to extend the qubit lifetime remains one of the outstanding experimental challenges in quantum computing. Here, we report the protection of classical states from environmental bit-flip errors and demonstrate the suppression of these errors with increasing system size. We use a linear array of nine qubits, which is a natural precursor of the two-dimensional surface code QEC scheme, and track errors as they occur by repeatedly performing projective quantum non-demolition (QND) parity measurements. Relative to a single physical qubit, we reduce the failure rate in retrieving an input state by a factor of 2.7 for five qubits and a factor of 8.5 for nine qubits after eight cycles. Additionally, we tomographically verify preservation of the non-classical Greenberger-Horne-Zeilinger (GHZ) state. The successful suppression of environmentally-induced errors strongly motivates further research into the many exciting challenges associated with building a large-scale superconducting quantum computer.
Many superconducting qubits are highly sensitive to dielectric loss, making the fabrication of coherent quantum circuits challenging. To elucidate this issue, we characterize the interfacesand surfaces of superconducting coplanar waveguide resonators and study the associated microwave loss. We show that contamination induced by traditional qubit lift-off processing is particularly detrimental to quality factors without proper substrate cleaning, while roughness plays at most a small role. Aggressive surface treatment is shown to damage the crystalline substrate and degrade resonator quality. We also introduce methods to characterize and remove ultra-thin resist residue, providing a way to quantify and minimize remnant sources of loss on device surfaces.
The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robustand hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Here we demonstrate a novel dynamical method to explore topological phases in both interacting and non-interacting systems, by employing the exquisite control afforded by state-of-the-art superconducting quantum circuits. We utilize this method to experimentally explore the well-known Haldane model of topological phase transitions by directly measuring the topological invariants of the system. We construct the topological phase diagram of this model and visualize the microscopic evolution of states across the phase transition, tasks whose experimental realizations have remained elusive. Furthermore, we developed a new qubit architecture that allows simultaneous control over every term in a two-qubit Hamiltonian, with which we extend our studies to an interacting Hamiltonian and discover the emergence of an interaction-induced topological phase. Our implementation, involving the measurement of both global and local textures of quantum systems, is close to the original idea of quantum simulation as envisioned by R. Feynman, where a controllable quantum system is used to investigate otherwise inaccessible quantum phenomena. This approach demonstrates the potential of superconducting qubits for quantum simulation and establishes a powerful platform for the study of topological phases in quantum systems.
Understanding complex quantum matter presents a central challenge in condensed matter physics. The difficulty lies in the exponential scaling of the Hilbert space with the system size,making solutions intractable for both analytical and conventional numerical methods. As originally envisioned by Richard Feynman, this class of problems can be tackled using controllable quantum simulators. Despite many efforts, building an quantum emulator capable of solving generic quantum problems remains an outstanding challenge, as this involves controlling a large number of quantum elements. Here, employing a multi-element superconducting quantum circuit and manipulating a single microwave photon, we demonstrate that we can simulate the weak localization phenomenon observed in mesoscopic systems. By engineering the control sequence in our emulator circuit, we are also able to reproduce the well-known temperature dependence of weak localization. Furthermore, we can use our circuit to continuously tune the level of disorder, a parameter that is not readily accessible in mesoscopic systems. By demonstrating a high level of control and complexity, our experiment shows the potential for superconducting quantum circuits to realize scalable quantum simulators.
We present a method for optimizing quantum control in experimental systems, using a subset of randomized benchmarking measurements to rapidly infer error. This is demonstrated to improvesingle- and two-qubit gates, minimize gate bleedthrough, where a gate mechanism can cause errors on subsequent gates, and identify control crosstalk in superconducting qubits. This method is able to correct parameters to where control errors no longer dominate, and is suitable for automated and closed-loop optimization of experimental systems
We introduce a superconducting qubit architecture that combines high-coherence qubits and tunable qubit-qubit coupling. With the ability to set the coupling to zero, we demonstratethat this architecture is protected from the frequency crowding problems that arise from fixed coupling. More importantly, the coupling can be tuned dynamically with nanosecond resolution, making this architecture a versatile platform with applications ranging from quantum logic gates to quantum simulation. We illustrate the advantages of dynamic coupling by implementing a novel adiabatic controlled-Z gate, at a speed approaching that of single-qubit gates. Integrating coherence and scalable control, our „gmon“ architecture is a promising path towards large-scale quantum computation and simulation.
A quantum computer can solve hard problems – such as prime factoring, database searching, and quantum simulation – at the cost of needing to protect fragile quantum statesfrom error. Quantum error correction provides this protection, by distributing a logical state among many physical qubits via quantum entanglement. Superconductivity is an appealing platform, as it allows for constructing large quantum circuits, and is compatible with microfabrication. For superconducting qubits the surface code is a natural choice for error correction, as it uses only nearest-neighbour coupling and rapidly-cycled entangling gates. The gate fidelity requirements are modest: The per-step fidelity threshold is only about 99%. Here, we demonstrate a universal set of logic gates in a superconducting multi-qubit processor, achieving an average single-qubit gate fidelity of 99.92% and a two-qubit gate fidelity up to 99.4%. This places Josephson quantum computing at the fault-tolerant threshold for surface code error correction. Our quantum processor is a first step towards the surface code, using five qubits arranged in a linear array with nearest-neighbour coupling. As a further demonstration, we construct a five-qubit Greenberger-Horne-Zeilinger (GHZ) state using the complete circuit and full set of gates. The results demonstrate that Josephson quantum computing is a high-fidelity technology, with a clear path to scaling up to large-scale, fault-tolerant quantum circuits.
Progress in superconducting qubit experiments with greater numbers of qubits or advanced techniques such as feedback requires faster and more accurate state measurement. We have designeda multiplexed measurement system with a bandpass filter that allows fast measurement without increasing environmental damping of the qubits. We use this to demonstrate simultaneous measurement of four qubits on a single superconducting integrated circuit, the fastest of which can be measured to 99.8% accuracy in 140ns. This accuracy and speed is suitable for advanced multi-qubit experiments including surface code error correction.
Quantum information systems require high fidelity quantum operations. It is particularly challenging to convert flying qubits to stationary qubits for deterministic quantum networks,since absorbing naturally shaped emission has a maximum fidelity of only 54%. Theoretical protocols reaching 100% efficiency rely upon sculpting the time dependence of photon wavepackets and receiver coupling. Using these schemes, experimental fidelities have reached up to 20% for optical photons and 81% for microwave photons, although with drive pulses much longer than the cavity decay rate. Here, we demonstrate a particularly simple „time reversed“ photon shape and gated receiver with an absorption fidelity of 99.4% and a receiver efficiency of 97.4% for microwave photons. We classically drive a superconducting coplanar waveguide resonator an order of magnitude shorter than the intrinsic decay time. With the fidelity now at the error threshold for fault tolerant quantum communication (96%) and computation (99.4%) and comparable to fidelities of good logic gates and measurements, new designs may be envisioned for quantum communication and computation systems.
We introduce a frequency-multiplexed readout scheme for superconducting phase
qubits. Using a quantum circuit with four phase qubits, we couple each qubit to
a separate lumped-elementsuperconducting readout resonator, with the readout
resonators connected in parallel to a single measurement line. The readout
resonators and control electronics are designed so that all four qubits can be
read out simultaneously using frequency multiplexing on the one measurement
line. This technology provides a highly efficient and compact means for reading
out multiple qubits, a significant advantage for scaling up to larger numbers
of qubits.