Single-shot realization of nonadiabatic holonomic gates with a superconducting Xmon qutrit

  1. Zhenxing Zhang,
  2. P. Z. Zhao,
  3. Tenghui Wang,
  4. Liang Xiang,
  5. Zhilong Jia,
  6. Peng Duan,
  7. D.M. Tong,
  8. Yi Yin,
  9. and Guoping Guo
Nonadiabatic holonomic quantum computation has received increasing attention due to its robustness against control errors as well as high-speed realization. The original protocol of nonadiabatic holonomic one-qubit gates has been experimentally demonstrated with superconducting transmon qutrit. However, the original protocol requires two noncommuting gates to realize an arbitrary one-qubit gate, which doubles the exposure time of gates to error sources and therefore makes the gates vulnerable to environment-induced decoherence. Single-shot protocol was subsequently proposed to realize an arbitrary one-qubit nonadiabatic holonomic gate. In this paper, we experimentally realize the single-shot protocol of nonadiabatic holonomic single qubit gates with a superconducting Xmon qutrit, where all the Clifford element gates are realized by a single-shot implementation. Characterized by quantum process tomography and randomized benchmarking, the single-shot gates reach a fidelity larger than 99%.

leave comment