Realization of Deterministic Quantum Teleportation with Solid State Qubits
Transferring the state of an information carrier from a sender to a receiver
is an essential primitive in both classical and quantum communication and
information processing. In a quantum process known as teleportation the unknown
state of a quantum bit can be relayed to a distant party using shared
entanglement and classical information. Here we present experiments in a
solid-state system based on superconducting quantum circuits demonstrating the
teleportation of the state of a qubit at the macroscopic scale. In our
experiments teleportation is realized deterministically with high efficiency
and achieves a high rate of transferred qubit states. This constitutes a
significant step towards the realization of repeaters for quantum communication
at microwave frequencies and broadens the tool set for quantum information
processing with superconducting circuits.