Publications

A Transmon Quantum Annealer: Decomposing Many-Body Ising Constraints Into Pair Interactions

  1. Martin Leib,
  2. Peter Zoller,
  3. and Wolfgang Lechner
Adiabatic quantum computing is an analog quantum computing scheme with various applications in solving optimization problems. In the parity picture of quantum optimization, the problem

Steady-state phase diagram of a driven QED-cavity array with cross-Kerr nonlinearities

  1. Jiasen Jin,
  2. Davide Rossini,
  3. Martin Leib,
  4. Michael J. Hartmann,
  5. and Rosario Fazio
We study the properties of an array of QED-cavities coupled by nonlinear elements in the presence of photon leakage and driven by a coherent source. The main effect of the nonlinear

Synchronized Switching in a Josephson Junction Crystal

  1. Martin Leib,
  2. and Michael J. Hartmann
We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted by a series of uniformly spaced Josephson junctions. The device forms an extended

Photon solid phases in driven arrays of non-linearly coupled cavities

  1. Jiasen Jin,
  2. Davide Rossini,
  3. Rosario Fazio,
  4. Martin Leib,
  5. and Michael J. Hartmann
We introduce and study the properties of an array of QED cavities coupled by non-linear elements, in the presence of photon leakage and driven by a coherent source. The non-linear

A Quantum Single Photon Transistor in Circuit Quantum Electrodynamics

  1. Lukas Neumeier,
  2. Martin Leib,
  3. and Michael J. Hartmann
We introduce a circuit quantum electrodynamical setup for a quantum single photon transistor. In our approach single photons propagate in two open transmission lines that are coupled

Thermal emission in the ultrastrong coupling regime

  1. A. Ridolfo,
  2. Martin Leib,
  3. S. Savasta,
  4. and M. J. Hartmann
We study thermal emission of a cavity quantum electrodynamic system in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable the cavity resonance

Many Body Physics with Coupled Transmission Line Resonators

  1. Martin Leib,
  2. and Michael J. Hartmann
We present the Josephson junction intersected superconducting transmission line resonator. In contrast to the Josephson parametric amplifier, Josephson bifurcation amplifier and Josephson

Photon Blockade in the Ultrastrong Coupling Regime

  1. Alessandro Ridolfo,
  2. Martin Leib,
  3. Salvatore Savasta,
  4. and Michael J. Hartmann
We explore photon coincidence counting statistics in the ultrastrong-coupling regime where the atom-cavity coupling rate becomes comparable to the cavity resonance frequency. In this

Networks of nonlinear superconducting transmission line resonators

  1. Martin Leib,
  2. Frank Deppe,
  3. Achim Marx,
  4. Rudolf Gross,
  5. and Michael Hartmann
We investigate a network of coupled superconducting transmission line resonators, each of them made nonlinear with a capacitively shunted Josephson junction coupling to the odd flux

Bose-Hubbard dynamics of polaritons in a chain of circuit QED cavities

  1. Martin Leib,
  2. and Michael J. Hartmann
We investigate a chain of superconducting stripline resonators, each interacting with a transmon qubit, that are capacitively coupled in a row. We show that the dynamics of this system