High-fidelity gate operations are essential to the realization of a fault-tolerant quantum computer. In addition, the physical resources required to implement gates must scale efficientlywith system size. A longstanding goal of the superconducting qubit community is the tight integration of a superconducting quantum circuit with a proximal classical cryogenic control system. Here we implement coherent control of a superconducting transmon qubit using a Single Flux Quantum (SFQ) pulse driver cofabricated on the qubit chip. The pulse driver delivers trains of quantized flux pulses to the qubit through a weak capacitive coupling; coherent rotations of the qubit state are realized when the pulse-to-pulse timing is matched to a multiple of the qubit oscillation period. We measure the fidelity of SFQ-based gates to be ~95% using interleaved randomized benchmarking. Gate fidelities are limited by quasiparticle generation in the dissipative SFQ driver. We characterize the dissipative and dispersive contributions of the quasiparticle admittance and discuss mitigation strategies to suppress quasiparticle poisoning. These results open the door to integration of large-scale superconducting qubit arrays with SFQ control elements for low-latency feedback and stabilization.

We propose a method for fast, deterministic resonator reset based on tunable dissipative modes. The dissipator is based on a Josephson junction with relatively low quality factor. Whenthe dissipator is tuned into resonance with a high quality microwave resonator, resonator photons are absorbed by the dissipator at a rate orders of magnitude faster than the resonator relaxation rate. We determine the optimal parameters for realization of the tunable dissipator, and examine application of the dissipator to removing spurious photon population in the qubit readout resonator in circuit quantum electrodynamics. We show that even in the nonlinear large photon occupation regime, this enhanced resonator decay rate can be attained by appropriate modulation of the dissipator frequency.

The superconducting fluxonium circuit is an artificial atom with a strongly anharmonic spectrum: when biased at a half flux quantum, the lowest qubit transition is an order of magnitudesmaller in frequency than those to higher levels. Similar to conventional atomic systems, such a frequency separation between the computational and noncomputational subspaces allows independent optimizations of the qubit coherence and two-qubit interactions. Here we describe a controlled-Z gate for two fluxoniums connected either capacitively or inductively, with qubit transitions fixed near 500 MHz. The gate is activated by a microwave drive at a resonance involving the second excited state. We estimate intrinsic gate fidelities over 99.9% with gate times below 100 ns.

We analyze the coupling of two qubits via an epitaxial semiconducting junction. In particular, we consider three configurations that include pairs of transmons or gatemons as well asgatemon-like two qubits formed by an epitaxial four-terminal junction. These three configurations provide an electrical control of the interaction between the qubits by applying voltage to a metallic gate near the semiconductor junction and can be utilized to naturally realize a controlled-Z gate (CZ). We calculate the fidelity and timing for such CZ gate. We demonstrate that in the absence of decoherence, the CZ gate can be performed under 50 ns with gate error below 10−4.

Parity measurement is a central tool to many quantum information processing tasks. In this Letter, we propose a method to directly measure two- and four-qubit parity with low overheadin hard- and software, while remaining robust to experimental imperfections. Our scheme relies on dispersive qubit-cavity coupling and photon counting that is sensitive only to intensity; both ingredients are widely realized in many different quantum computing modalities. For a leading technology in quantum computing, superconducting integrated circuits, we analyze the measurement contrast and the back action of the scheme and show that this measurement comes close enough to an ideal parity measurement to be applicable to quantum error correction.

High-fidelity, efficient quantum nondemolition readout of quantum bits is integral to the goal of quantum computation. As superconducting circuits approach the requirements of scalable,universal fault tolerance, qubit readout must also meet the demand of simplicity to scale with growing system size. Here we propose a fast, high-fidelity, scalable measurement scheme based on the state-selective ring-up of a cavity followed by photodetection with the recently introduced Josephson photomultiplier (JPM), a current-biased Josephson junction. This scheme maps qubit state information to the binary digital output of the JPM, circumventing the need for room-temperature heterodyne detection and offering the possibility of a cryogenic interface to superconducting digital control circuitry. Numerics show that measurement contrast in excess of 95% is achievable in a measurement time of 140 ns. We discuss perspectives to scale this scheme to enable readout of multiple qubit channels with a single JPM.