A high on-off ratio beamsplitter interaction for gates on bosonically encoded qubits

  1. Benjamin J. Chapman,
  2. Stijn J. de Graaf,
  3. Sophia H. Xue,
  4. Yaxing Zhang,
  5. James Teoh,
  6. Jacob C. Curtis,
  7. Takahiro Tsunoda,
  8. Alec Eickbusch,
  9. Alexander P. Read,
  10. Akshay Koottandavida,
  11. Shantanu O. Mundhada,
  12. Luigi Frunzio,
  13. M. H. Devoret,
  14. S. M. Girvin,
  15. and R. J. Schoelkopf
Encoding a qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device, but presents a challenge:
how can quantum oscillators be controlled while introducing a minimal number of additional error channels? We focus on the two-qubit portion of this control problem by using a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency, without introducing major additional sources of decoherence. Combining this with single-oscillator control provided by a dispersively coupled transmon provides a framework for quantum control of multiple encoded qubits. The beamsplitter interaction gbs is fast relative to the timescale of oscillator decoherence, enabling over 103 beamsplitter operations per coherence time, and approaching the typical rate of the dispersive coupling χ used for individual oscillator control. Further, the programmable coupling is engineered without adding unwanted interactions between the oscillators, as evidenced by the high on-off ratio of the operations, which can exceed 105. We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime gbs≈χ, in which a transmon provides the control bit for the SWAP of two bosonic modes. Finally, we use this gate in a SWAP test to project a pair of bosonic qubits into a Bell state with measurement-corrected fidelity of 95.5%±0.2%.

Real-time quantum error correction beyond break-even

  1. V. V. Sivak,
  2. A. Eickbusch,
  3. B. Royer,
  4. S. Singh,
  5. I. Tsioutsios,
  6. S. Ganjam,
  7. A. Miano,
  8. B. L. Brock,
  9. A. Z. Ding,
  10. L. Frunzio,
  11. S. M. Girvin,
  12. R. J. Schoelkopf,
  13. and M. H. Devoret
The ambition of harnessing the quantum for computation is at odds with the fundamental phenomenon of decoherence. The purpose of quantum error correction (QEC) is to counteract the
natural tendency of a complex system to decohere. This cooperative process, which requires participation of multiple quantum and classical components, creates a special type of dissipation that removes the entropy caused by the errors faster than the rate at which these errors corrupt the stored quantum information. Previous experimental attempts to engineer such a process faced an excessive generation of errors that overwhelmed the error-correcting capability of the process itself. Whether it is practically possible to utilize QEC for extending quantum coherence thus remains an open question. We answer it by demonstrating a fully stabilized and error-corrected logical qubit whose quantum coherence is significantly longer than that of all the imperfect quantum components involved in the QEC process, beating the best of them with a coherence gain of G=2.27±0.07. We achieve this performance by combining innovations in several domains including the fabrication of superconducting quantum circuits and model-free reinforcement learning.

Frequency-tunable Kerr-free three-wave mixing with a gradiometric SNAIL

  1. A. Miano,
  2. G. Liu,
  3. V. V. Sivak,
  4. N. E. Frattini,
  5. V. R. Joshi,
  6. W. Dai,
  7. L. Frunzio,
  8. and M. H. Devoret
Three-wave mixing is a key process in superconducting quantum information processing, being involved in quantum-limited amplification and parametric coupling between superconducting
cavities. These operations can be implemented by SNAIL-based devices that present a Kerr-free flux-bias point where unwanted parasitic effects such as Stark shift are suppressed. However, with a single flux-bias parameter, these circuits can only host one Kerr-free point, limiting the range of their applications. In this Letter, we demonstrate how to overcome this constraint with a gradiometric SNAIL, a doubly-flux biased superconducting circuit for which both effective inductance and Kerr coefficient can be independently tuned. Experimental data show the capability of the gradiometric SNAIL to suppress Kerr effect in a three-wave mixing parametric amplifier over a continuum of flux bias points corresponding to a 1.7 GHz range of operating frequencies.

Coherent manipulation of an Andreev spin qubit

  1. M. Hays,
  2. V. Fatemi,
  3. D. Bouman,
  4. J. Cerrillo,
  5. S. Diamond,
  6. K. Serniak,
  7. T. Connolly,
  8. P. Krogstrup,
  9. J. Nygård,
  10. A. Levy Yeyati,
  11. A. Geresdi,
  12. and M. H. Devoret
Two promising architectures for solid-state quantum information processing are electron spins in semiconductor quantum dots and the collective electromagnetic modes of superconducting
circuits. In some aspects, these two platforms are dual to one another: superconducting qubits are more easily coupled but are relatively large among quantum devices (∼mm), while electrostatically-confined electron spins are spatially compact (∼μm) but more complex to link. Here we combine beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We demonstrate coherent spin manipulation by combining single-shot circuit-QED readout and spin-flipping Raman transitions, finding a spin-flip time TS=17 μs and a spin coherence time T2E=52 ns. These results herald a new spin qubit with supercurrent-based circuit-QED integration and further our understanding and control of Andreev levels — the parent states of Majorana zero modes — in semiconductor-superconductor heterostructures.

Free-standing silicon shadow masks for transmon qubit fabrication

  1. I. Tsioutsios,
  2. K. Serniak,
  3. S. Diamond,
  4. Z. Wang,
  5. S. Shankar,
  6. L. Frunzio,
  7. R. J. Schoelkopf,
  8. and M. H. Devoret
Nanofabrication techniques for superconducting qubits rely on resist-based masks patterned by electron-beam or optical lithography. We have developed an alternative nanofabrication
technique based on free-standing silicon shadow masks fabricated from silicon-on-insulator wafers. These silicon shadow masks not only eliminate organic residues associated with resist-based lithography, but also provide a pathway to better understand and control surface-dielectric losses in superconducting qubits by decoupling mask fabrication from substrate preparation. We have successfully fabricated aluminum 3D transmon superconducting qubits with these shadow masks, and demonstrated energy relaxation times on par with state-of-the-art values.

Quantum Microwave Radiometry with a Superconducting Qubit

  1. Zhixin Wang,
  2. Mingrui Xu,
  3. Xu Han,
  4. Wei Fu,
  5. Shruti Puri,
  6. S. M. Girvin,
  7. Hong X. Tang,
  8. S. Shankar,
  9. and M. H. Devoret
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the
photon-induced-dephasing process of a superconducting qubit for sensing microwave radiation at the sub-unit-photon level. Using this radiometer, we demonstrated the radiative cooling of a 1-K microwave resonator and measured its mode temperature with an uncertainty ~0.01 K. We have thus developed a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.

Josephson Array Mode Parametric Amplifier

  1. V. V. Sivak,
  2. S. Shankar,
  3. G. Liu,
  4. J. Aumentado,
  5. and M. H. Devoret
We introduce a novel near-quantum-limited amplifier with a large tunable bandwidth and high dynamic range – the Josephson Array Mode Parametric Amplifier (JAMPA). The signal and
idler modes involved in the amplification process are realized by the array modes of a chain of 1000 flux tunable, Josephson-junction-based, nonlinear elements. The frequency spacing between array modes is comparable to the flux tunability of the modes, ensuring that any desired frequency can be occupied by a resonant mode, which can further be pumped to produce high gain. We experimentally demonstrate that the device can be operated as a nearly quantum-limited parametric amplifier with 20 dB of gain at almost any frequency within (4-12) GHz band. On average, it has a 3 dB bandwidth of 11 MHz and input 1 dB compression power of -108 dBm, which can go as high as -93 dBm. We envision the application of such a device to the time- and frequency-multiplexed readout of multiple qubits, as well as to the generation of continuous-variable cluster states.

Continuous monitoring of a trapped, superconducting spin

  1. M. Hays,
  2. V. Fatemi,
  3. K. Serniak,
  4. D. Bouman,
  5. S. Diamond,
  6. G. de Lange,
  7. P. Krogstrup,
  8. J. Nygård,
  9. A. Geresdi,
  10. and M. H. Devoret
Readout and control of fermionic spins in solid-state systems are key primitives of quantum information processing and microscopic magnetic sensing. The highly localized nature of most
fermionic spins decouples them from parasitic degrees of freedom, but makes long-range interoperability difficult to achieve. In light of this challenge, an active effort is underway to integrate fermionic spins with circuit quantum electrodynamics (cQED), which was originally developed in the field of superconducting qubits to achieve single-shot, quantum-non-demolition (QND) measurements and long-range couplings. However, single-shot readout of an individual spin with cQED has remained elusive due to the difficulty of coupling a resonator to a particle trapped by a charge-confining potential. Here we demonstrate the first single-shot, cQED readout of a single spin. In our novel implementation, the spin is that of an individual superconducting quasiparticle trapped in the Andreev levels of a semiconductor nanowire Josephson element. Due to a spin-orbit interaction inside the nanowire, this „superconducting spin“ directly determines the flow of supercurrent through the element. We harnessed this spin-dependent supercurrent to achieve both a zero-field spin splitting as well as a long-range interaction between the quasiparticle and a superconducting microwave resonator. Owing to the strength of this interaction in our device, measuring the resultant spin-dependent resonator frequency yielded QND spin readout with 92% fidelity in 1.9 μs and allowed us to monitor the quasiparticle’s spin in real time. These results pave the way for new „fermionic cQED“ devices: superconducting spin qubits operating at zero magnetic field, devices in which the spin has enhanced governance over the circuit, and time-domain measurements of Majorana modes.

Superconducting circuit protected by two-Cooper-pair tunneling

  1. W. C. Smith,
  2. A. Kou,
  3. X. Xiao,
  4. U. Vool,
  5. and M. H. Devoret
We present a protected superconducting qubit based on an effective circuit element that only allows pairs of Cooper pairs to tunnel. These dynamics give rise to a nearly degenerate
ground state manifold indexed by the parity of tunneled Cooper pairs. We show that, when the circuit element is shunted by a large capacitance, this manifold can be used as a logical qubit that we expect to be insensitive to multiple relaxation and dephasing mechanisms.

Photon-assisted charge-parity jumps in a superconducting qubit

  1. M. Houzet,
  2. K. Serniak,
  3. G. Catelani,
  4. M. H. Devoret,
  5. and L. I. Glazman
We evaluate the rates of energy and phase relaxation of a superconducting qubit caused by stray photons with energy exceeding the threshold for breaking a Cooper pair. All channels
of relaxation within this mechanism are associated with the change in the charge parity of the qubit, enabling the separation of the photon-assisted processes from other contributions to the relaxation rates. Among the signatures of the new mechanism is the same order of rates of the transitions in which a qubit looses or gains energy.