In this work, we propose a flexible architecture of microwave resonators with tuneable couplings to perform quantum simulations of molecular chemistry problems. The architecture buildson the experience of the D-Wave design, working with nearly harmonic circuits instead of with qubits. This architecture, or modifications of it, can be used to emulate molecular processes such as vibronic transitions. Furthermore, we discuss several aspects of these emulations, such as dynamical ranges of the physical parameters, quenching times necessary for diabaticity and finally the possibility of implementing anharmonic corrections to the force fields by exploiting certain nonlinear features of superconducting devices.

We study effective light-matter interactions in a circuit QED system consisting of a single LC resonator, which is coupled symmetrically to multiple superconducting qubits. Startingfrom a minimal circuit model, we demonstrate that in addition to the usual collective qubit-photon coupling the resulting Hamiltonian contains direct qubit-qubit interactions, which prevent the otherwise expected superradiant phase transition in the ground state of this system. Moreover, these qubit-qubit interactions are responsible for an opposite mechanism, which at very strong couplings completely decouples the photon mode and projects the qubits into a highly entangled ground state. These findings shed new light on the controversy over the existence of superradiant phase transitions in cavity and circuit QED systems, and show that the physics of ultrastrong light-matter interactions in two- or multi-qubit settings differ drastically from the more familiar one qubit case.

In this work we develop a semi-analytical variational ansatz to study the properties of few photon excitations interacting with a collection of quantum emitters in regimes that go beyondthe rotating wave approximation. This method can be used to approximate both the static and dynamical properties of a superconducting qubit in an open transmission line, including the spontaneous emission spectrum and the resonances in scattering experiments. The approximations are quantitatively accurate for rather strong couplings, as shown by a direct comparison to Matrix-Product-State numerical methods, and provide also a good qualitative description for stronger couplings well beyond the Markovian regime.

Quantum correlations present in a broadband two-line squeezed microwave state can induce entanglement in a spatially separated bipartite system consisting of either two single qubitsor two qubit ensembles. By using an appropriate master equation for a bipartite quantum system in contact with two separate but entangled baths, the generating entanglement process in spatially separated quantum systems is thoroughly characterized. Our results provide evidence that this entanglement transfer by dissipation is feasible yielding to a steady-state amount of entanglement in the bipartite quantum system which can be optimized for a wide range of realistic physical systems that include state-of-the-art experiments with NV centers in diamond, superconducting qubits or even magnetic molecules embedded in a crystalline matrix.

A superconducting qubit coupled to an open transmission line represents an implementation of the spin-boson model with a broadband environment. We show that this environment can beengineered by introducing partial reflectors into the transmission line, allowing to shape the spectral function, J({\omega}), of the spin-boson model. The spectral function can be accessed by measuring the resonance fluorescence of the qubit, which provides information on both the engineered environment and the coupling between qubit and transmission line. The spectral function of a transmission line without partial reflectors is found to be Ohmic over a wide frequency range, whereas a peaked spectral density is found for the shaped environment. Our work lays the ground for future quantum simulations of other, more involved, impurity models with superconducting circuits.

We introduce a lattice model of interacting spins and bosons that leads to Luttinger-liquid physics, and allows for quantitative tests of the theory of bosonization by means of trapped-ionor superconducting-circuit experiments. By using a variational bosonization ansatz, we calculate the power-law decay of spin and boson correlation functions, and study their dependence on a single tunable parameter, namely a bosonic driving. For small drivings, Matrix-Product-States (MPS) numerical methods are shown to be efficient and validate our ansatz. Conversely, even static MPS become inefficient for large-driving regimes, such that the experiment can potentially outperform classical numerics, achieving one of the goals of quantum simulations.

We demonstrate that stationary localized solutions (discrete solitons) exist in a one dimensional Bose-Hubbard lattices with gain and loss in the semiclassical regime. Stationary solutions,by defi- nition, are robust and do not demand for state preparation. Losses, unavoidable in experiments, are not a drawback, but a necessary ingredient for these modes to exist. The semiclassical calculations are complemented with their classical limit and dynamics based on a Gutzwiller Ansatz. We argue that circuit QED architectures are ideal platforms for realizing the physics developed here. Finally, within the input-output formalism, we explain how to experimentally access the different phases, including the solitons, of the chain.

We study the spontaneous emission of a qubit interacting with a one-dimensional waveguide through a realistic minimal-coupling interaction. We show that the diamagnetic term A2 leadsto an effective decoupling of a single qubit from the electromagnetic field. This effects is observable at any range of qubit-photon couplings. For this we study a setup consisting of a transmon that is suspended over a transmission line. We prove that the relative strength of the A2 term is controlled with the qubit-line separation and show that, as a consequence, the spontaneous emission rate of the suspended transmon onto the line can increase with such separation, instead of decreasing.

We show how a pair of superconducting qubits coupled to a microwave cavity mode can be used to engineer a single-atom laser that emits light into a non-classical state. Our scheme relieson the dressing of the qubit-field coupling by periodic modulations of the qubit energy. In the dressed basis, the radiative decay of the first qubit becomes an effective incoherent pumping mechanism that injects energy into the system, hence turning dissipation to our advantage. A second, auxiliary qubit is used to shape the decay within the cavity, in such a way that lasing occurs in a squeezed basis of the cavity mode. We characterize the system both by mean-field theory and exact calculations. Our work may find applications in the generation of squeezing and entanglement in circuit QED, as well as in the study of dissipative many-body phase transitions.

We introduce a model of quantum magnetism induced by the non-perturbative exchange of microwave photons between distant superconducting qubits. By interconnecting qubits and cavities,we obtain a spin-boson lattice model that exhibits a quantum phase transition where both qubits and cavities spontaneously polarise. We present a many-body ansatz that captures this phenomenon all the way, from a the perturbative dispersive regime where photons can be traced out, to the non-perturbative ultra-strong coupling regime where photons must be treated on the same footing as qubits. Our ansatz also reproduces the low-energy excitations, which are described by hybridised spin-photon quasiparticles, and can be probed spectroscopically from transmission experiments in circuit-QED, as shown by simulating a possible experiment by Matrix-Product-State methods.