Artificial atoms non-locally coupled to waveguides — the so-called giant atoms — offer new opportunities for the control of light and matter. In this work, we show how touse an array of non-locally coupled transmon „molecules“ to engineer a passive photonic controlled gate for waveguide photons. In particular, we show that a conditional elastic phase shift between counter-propagating photons arises from the interplay between direction-dependent couplings, engineered through an interplay of non local interactions and molecular binding strength; and the nonlinearity of the transmon array. We analyze the conditions under which a maximal π-phase shift — and hence a CZ gate — is obtained, and characterize the gate fidelity as a function of key experimental parameters, including finite transmon nonlinearities, emitter spectral inhomogeneities, and limited cooperativity. Our work opens the use of giant atoms as key elements of microwave photonic quantum computing devices.
We demonstrate an experimentally feasible circuit-QED Bose-Hubbard simulator that reproduces the complex spin dynamics of Heisenberg models. Our method relies on mapping spin-1/2 systemsonto bosonic states via the polynomially expanded Holstein-Primakoff (HP) transformation. The HP transformation translates the intricate behavior of spins into a representation that is compatible with bosonic devices like those in a circuit QED setup. For comparison, we also implement the Dyson-Maleev (DM) encoding for spin-1/2 and show that, in this limit, DM and HP are equivalent. We show the equivalence of the DM and the HP transformations for spin-1/2 systems. Rigorous numerical analyses confirm the effectiveness of our HP-based protocol. Specifically, we obtain the concurrence between the spin dynamics and the behavior of microwave photons within our circuit QED-based analog simulator that is designed for the Bose-Hubbard model. By utilizing the microwave photons inherent to circuit QED devices, our framework presents an accessible, scalable avenue for probing quantum spin dynamics in an experimentally viable setting.
The field of superconducting qubits is constantly evolving with new circuit designs. However, when it comes to qubit readout, the use of simple transverse linear coupling remains overwhelminglyprevalent. This standard readout scheme has significant drawbacks: in addition to the Purcell effect, it suffers from a limitation on the maximal number of photons in the readout mode, which restricts the signal-to-noise ratio (SNR) and the Quantum Non-Demolition (QND) nature of the readout. Here, we explore the high-power regime by engineering a nonlinear coupling between a transmon qubit and its readout mode. Our approach builds upon previous work by Dassonneville et al. [Physical Review X 10, 011045 (2020)], on qubit readout with a non-perturbative cross-Kerr coupling in a transmon molecule. We demonstrate a readout fidelity of 99.21% with 89 photons utilizing a parametric amplifier. At this elevated photon number, the QND nature remains high at 96.7%. Even with up to 300 photons, the QNDness is only reduced by a few percent. This is qualitatively explained by deriving a critical number of photons associated to the nonlinear coupling, yielding a theoretical value of n¯critr=377 photons for our sample’s parameters. These results highlight the promising performance of the transmon molecule in the high-power regime for high-fidelity qubit readout.
We study the phenomena of topological amplification in one-dimensional traveling-wave parametric amplifiers. We find two phases of topological amplification, both with directional transportand exponential gain with the number of sites, and one of them featuring squeezing. We also find a topologically trivial phase with zero-energy modes which produces amplification but lacks topological protection. We characterize the resilience to disorder of the different phases, their stability, gain and noise-to-signal ratio. Finally, we discuss their experimental implementation with state-of-the-art techniques.
Low-noise microwave amplification is crucial for detecting weak signals in quantum technologies and radio astronomy. An ideal device must amplify a broad range of frequencies whileadding minimal noise, and be directional, so that it favors the observer’s direction while protecting the source from its environment. Current amplifiers do not satisfy all these requirements, severely limiting the scalability of superconducting quantum devices. Here, we demonstrate the feasibility of building a near-ideal quantum amplifier using a homogeneous Josephson junction array and the non-trivial topology of its dynamics. Our design relies on breaking time-reversal symmetry via a non-local parametric drive, which induces directional amplification in a way similar to edge states in topological insulators. The system then acquires unprecedented amplifying properties, such as a gain growing exponentially with system size, exponential suppression of back-wards noise, and topological protection against disorder. We show that these features allow a state-of-the-art superconducting device to manifest near-quantum-limited directional amplification with a gain largely surpassing 20 dB and -30 dB of reverse attenuation over a large bandwidth of GHz. This opens the door for integrating near-ideal and compact pre-amplifiers on the same chip as quantum processors.