Observation of topological phenomena in a programmable lattice of 1,800 qubits

  1. Andrew D. King,
  2. Juan Carrasquilla,
  3. Isil Ozfidan,
  4. Jack Raymond,
  5. Evgeny Andriyash,
  6. Andrew Berkley,
  7. Mauricio Reis,
  8. Trevor M. Lanting,
  9. Richard Harris,
  10. Gabriel Poulin-Lamarre,
  11. Anatoly Yu. Smirnov,
  12. Christopher Rich,
  13. Fabio Altomare,
  14. Paul Bunyk,
  15. Jed Whittaker,
  16. Loren Swenson,
  17. Emile Hoskinson,
  18. Yuki Sato,
  19. Mark Volkmann,
  20. Eric Ladizinsky,
  21. Mark Johnson,
  22. Jeremy Hilton,
  23. and Mohammad H. Amin
The celebrated work of Berezinskii, Kosterlitz and Thouless in the 1970s revealed exotic phases of matter governed by topological properties of low-dimensional materials such as thin
films of superfluids and superconductors. Key to this phenomenon is the appearance and interaction of vortices and antivortices in an angular degree of freedom—typified by the classical XY model—due to thermal fluctuations. In the 2D Ising model this angular degree of freedom is absent in the classical case, but with the addition of a transverse field it can emerge from the interplay between frustration and quantum fluctuations. Consequently a Kosterlitz-Thouless (KT) phase transition has been predicted in the quantum system by theory and simulation. Here we demonstrate a large-scale quantum simulation of this phenomenon in a network of 1,800 in situ programmable superconducting flux qubits arranged in a fully-frustrated square-octagonal lattice. Essential to the critical behavior, we observe the emergence of a complex order parameter with continuous rotational symmetry, and the onset of quasi-long-range order as the system approaches a critical temperature. We use a simple but previously undemonstrated approach to statistical estimation with an annealing-based quantum processor, performing Monte Carlo sampling in a chain of reverse quantum annealing protocols. Observations are consistent with classical simulations across a range of Hamiltonian parameters. We anticipate that our approach of using a quantum processor as a programmable magnetic lattice will find widespread use in the simulation and development of exotic materials.

Dynamical Autler-Townes control of a phase qubit

  1. Jian Li,
  2. G. S. Paraoanu,
  3. Katarina Cicak,
  4. Fabio Altomare,
  5. Jae I. Park,
  6. Raymond W. Simmonds,
  7. Mika A. Sillanpaa,
  8. and Pertti J. Hakonen
Routers, switches, and repeaters are essential components of modern information-processing systems. Similar devices will be needed in future superconducting quantum computers. In this
work we investigate experimentally the time evolution of Autler-Townes splitting in a superconducting phase qubit under the application of a control tone resonantly coupled to the second transition. A three-level model that includes independently determined parameters for relaxation and dephasing gives excellent agreement with the experiment. The results demonstrate that the qubit can be used as a ON/OFF switch with 100 ns operating time-scale for the reflection/transmission of photons coming from an applied probe microwave tone. The ON state is realized when the control tone is sufficiently strong to generate an Autler-Townes doublet, suppressing the absorption of the probe tone photons and resulting in a maximum of transmission.