Optimizing Pulse Shapes of an Echoed Conditional Displacement Gate in a Superconducting Bosonic System

  1. Maxime Lapointe-Major,
  2. Yongchao Tang,
  3. Mehmet Canturk,
  4. and Pooya Ronagh
Echoed conditional displacement (ECD) gates for bosonic systems have become the key element for real-time quantum error correction beyond the break-even point. These gates are characterized
by a single complex parameter β, and can be constructed using Gaussian pulses and free evolutions with the help of an ancillary transmon qubit. We show that there is a lower bound for the gate time in the standard construction of an ECD gate. We present a method for optimizing the pulse shape of an ECD gate using a pulse-shaping technique subject to a set of experimental constraints. Our optimized pulse shapes remain symmetric, and can be applied to a range of target values of β by tuning only the amplitude. We demonstrate that the total gate time of an ECD gate for a small value of β can be reduced either by relaxing the no-overlap constraint on the primitives used in the standard construction or via our optimal-control method. We show a slight advantage of the optimal-control method by demonstrating a reduction in the preparation time of a |+ZGKP> logical state by ∼10%.

Demonstration of long-range correlations via susceptibility measurements in a one-dimensional superconducting Josephson spin chain

  1. Daniel M. Tennant,
  2. Xi Dai,
  3. Antonio J. Martinez,
  4. Robbyn Trappen,
  5. Denis Melanson,
  6. M. A. Yurtalan,
  7. Yongchao Tang,
  8. Salil Bedkihal,
  9. Rui Yang,
  10. Sergei Novikov,
  11. Jeffery A. Grover,
  12. Steven M. Disseler,
  13. James I. Basham,
  14. Rabindra Das,
  15. David K. Kim,
  16. Alexander J. Melville,
  17. Bethany M. Niedzielski,
  18. Steven J. Weber,
  19. Jonilyn L. Yoder,
  20. Andrew J. Kerman,
  21. Evgeny Mozgunov,
  22. Daniel A. Lidar,
  23. and Adrian Lupascu
Spin chains have long been considered an effective medium for long-range interactions, entanglement generation, and quantum state transfer. In this work, we explore the properties of
a spin chain implemented with superconducting flux circuits, designed to act as a connectivity medium between two superconducting qubits. The susceptibility of the chain is probed and shown to support long-range, cross chain correlations. In addition, interactions between the two end qubits, mediated by the coupler chain, are demonstrated. This work has direct applicability in near term quantum annealing processors as a means of generating long-range, coherent coupling between qubits.