Quantum error correction (QEC) provides a practical path to fault-tolerant quantum computing through scaling to large qubit numbers, assuming that physical errors are sufficiently uncorrelatedin time and space. In superconducting qubit arrays, high-energy impact events produce correlated errors, violating this key assumption. Following such an event, phonons with energy above the superconducting gap propagate throughout the device substrate, which in turn generate a temporary surge in quasiparticle (QP) density throughout the array. When these QPs tunnel across the qubits‘ Josephson junctions, they induce correlated errors. Engineering different superconducting gaps across the qubit’s Josephson junctions provides a method to resist this form of QP tunneling. By fabricating all-aluminum transmon qubits with both strong and weak gap engineering on the same substrate, we observe starkly different responses during high-energy impact events. Strongly gap engineered qubits do not show any degradation in T1 during impact events, while weakly gap engineered qubits show events of correlated degradation in T1. We also show that strongly gap engineered qubits are robust to QP poisoning from increasing optical illumination intensity, whereas weakly gap engineered qubits display rapid degradation in coherence. Based on these results, gap engineering removes the threat of high-energy impacts to QEC in superconducting qubit arrays.
A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two majorchallenges that could become fundamental roadblocks are manufacturing high performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dependent control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ∼3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to other quantum algorithms, operations, and computing architectures.
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approachfor implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (∼ 100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities‘ joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
Encoding a qubit in a high quality superconducting microwave cavity offers the opportunity to perform the first layer of error correction in a single device, but presents a challenge:how can quantum oscillators be controlled while introducing a minimal number of additional error channels? We focus on the two-qubit portion of this control problem by using a 3-wave mixing coupling element to engineer a programmable beamsplitter interaction between two bosonic modes separated by more than an octave in frequency, without introducing major additional sources of decoherence. Combining this with single-oscillator control provided by a dispersively coupled transmon provides a framework for quantum control of multiple encoded qubits. The beamsplitter interaction gbs is fast relative to the timescale of oscillator decoherence, enabling over 103 beamsplitter operations per coherence time, and approaching the typical rate of the dispersive coupling χ used for individual oscillator control. Further, the programmable coupling is engineered without adding unwanted interactions between the oscillators, as evidenced by the high on-off ratio of the operations, which can exceed 105. We then introduce a new protocol to realize a hybrid controlled-SWAP operation in the regime gbs≈χ, in which a transmon provides the control bit for the SWAP of two bosonic modes. Finally, we use this gate in a SWAP test to project a pair of bosonic qubits into a Bell state with measurement-corrected fidelity of 95.5%±0.2%.
Fluctuations of the qubit frequencies are one of the major problems to overcome on the way to scalable quantum computers. Of particular importance are fluctuations with the correlationtime that exceeds the decoherence time due to decay and dephasing by fast processes. The statistics of the fluctuations can be characterized by measuring the correlators of the outcomes of periodically repeated Ramsey measurements. This work suggests a method that allows describing qubit dynamics during repeated measurements in the presence of evolving noise. It made it possible, in particular, to evaluate the two-time correlator for the noise from two-level systems and obtain two- and three-time correlators for a Gaussian noise. The explicit expressions for the correlators are compared with simulations. A significant difference of the three-time correlators for the noise from two-level systems and for a Gaussian noise is demonstrated. Strong broadening of the distribution of the outcomes of Ramsey measurements, with a possible fine structure, is found for the data acquisition time comparable to the noise correlation time.
In continuous-variable quantum computing with qubits encoded in the infinite-dimensional Hilbert space of bosonic modes, it is a difficult task to realize strong and on-demand interactionsbetween the qubits. One option is to engineer a beamsplitter interaction for photons in two superconducting cavities by driving an intermediate superconducting circuit with two continuous-wave drives, as demonstrated in a recent experiment. Here, we show how quantum optimal control theory (OCT) can be used in a systematic way to improve the beamsplitter interaction between the two cavities. We find that replacing the two-tone protocol by a three-tone protocol accelerates the effective beamsplitter rate between the two cavities. The third tone’s amplitude and frequency are determined by gradient-free optimization and make use of cavity-transmon sideband couplings. We show how to further improve the three-tone protocol via gradient-based optimization while keeping the optimized drives experimentally feasible. Our work exemplifies how to use OCT to systematically improve practical protocols in quantum information applications.
High-Q microwave cavity modes coupled to transmon ancillas provide a hardware-efficient platform for quantum computing. Due to their coupling, the cavity modes inherit finite nonlinearityfrom the transmons. In this work, we theoretically and experimentally investigate how an off-resonant drive on the transmon ancilla modifies the nonlinearities of cavity modes in qualitatively different ways, depending on the interrelation among cavity-transmon detuning, drive-transmon detuning and transmon anharmonicity. For a cavity-transmon detuning that is smaller than or comparable to the drive-transmon detuning and transmon anharmonicity, the off-resonant transmon drive can induce multiphoton resonances among cavity and transmon excitations that strongly modify cavity nonlinearities as drive parameters vary. For a large cavity-transmon detuning, the drive induces cavity-photon-number-dependent ac Stark shifts of transmon levels that translate into effective cavity nonlinearities. In the regime of a weak transmon-cavity coupling, the cavity Kerr nonlinearity relates to the third-order nonlinear susceptibility function χ(3) of the driven ancilla. This susceptibility function provides a numerically efficient way of computing the cavity Kerr particularly for systems with many cavity modes controlled by a single transmon. It also serves as a diagnostic tool for identifying undesired drive-induced multiphoton resonance processes. Lastly, we show that by judiciously choosing the drive amplitude, a single off-resonant transmon drive can be used to cancel the cavity self-Kerr nonlinearity as well as inter-cavity cross-Kerr. This provides a way of dynamically correcting the cavity Kerr nonlinearity during bosonic operations or quantum error correction protocols that rely on the cavity modes being linear.
Modular networks are a promising paradigm for increasingly complex quantum devices based on the ability to transfer qubits and generate entanglement between modules. These tasks requirea low-loss, high-speed intermodule link that enables extensible network connectivity. Satisfying these demands simultaneously remains an outstanding goal for long-range optical quantum networks as well as modular superconducting processors within a single cryostat. We demonstrate communication and entanglement in a superconducting network with a microwave-actuated beamsplitter transformation between two bosonic qubits, which are housed in separate modules and joined by a demountable coaxial bus resonator. We transfer a qubit in a multi-photon encoding and track photon loss events to improve the fidelity, making it as high as in a single-photon encoding. Furthermore, generating entanglement with two-photon interference and postselection against loss errors produces a Bell state with success probability 79% and fidelity 0.94, halving the error obtained with a single photon. These capabilities demonstrate several promising methods for faithful operations between modules, including novel possibilities for resource-efficient direct gates.
The efficient simulation of quantum systems is a primary motivating factor for developing controllable quantum machines. A controllable bosonic machine is naturally suited for simulatingsystems with underlying bosonic structure, exploiting both quantum interference and an intrinsically large Hilbert space. Here, we experimentally realize a bosonic superconducting processor that combines arbitrary state preparation, a complete set of Gaussian operations, plus an essential non-Gaussian resource – a novel single-shot photon number resolving measurement scheme – all in one device. We utilize these controls to simulate the bosonic problem of molecular vibronic spectra, extracting the corresponding Franck-Condon factors for photoelectron processes in H2O, O3, NO2, and SO2. Our results demonstrate the versatile capabilities of the circuit QED platform, which can be extended to include non-Gaussian operations for simulating an even wider class of bosonic systems.
Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acousticmodes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (qRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes–implementing a qRAM on a single chip.