Vacuum gap capacitors have recently gained considerable attention in superconducting circuit platforms due to their compact design and low dielectric losses in the microwave regime.Their ability to support mechanical vibrational modes makes them ideal candidates for circuit optomechanics. However, precise control of gap size and achieving high coherence in mechanical modes remain long-standing challenges. Here, we present a detailed fabrication process for scalable vacuum gap capacitors that support ultra-high-coherence mechanical motion, exhibit low microwave loss, and maintain a small footprint compared to planar geometries. We fabricate arrays of up to 24 LC resonators, with capacitors featuring nanometer-scale gap size variations. We demonstrate that the mechanical quality factors can reach up to 40×106, a 100-fold improvement over other platforms, with microwave quality factors (105) at low photon number levels. This platform also achieves a sizable single-photon optomechanical coupling rate of approximately 20 Hz. Using this, we cooled the mechanical oscillator to its ground state (0.07 quanta) and squeezed its motion below the vacuum level by 2.7 dB. We further demonstrate the scalability of this platform by implementing large-scale optomechanical arrays, a strained graphene model, and observing quantum collective phenomena in a mechanical hexamer. These vacuum gap capacitors are promising candidates for coupling superconducting qubits with mechanical systems, serving as storage elements in quantum computing, and exploring gravitational effects on quantum mechanics.
Superconducting qubits are one of the most advanced candidates to realize scalable and fault-tolerant quantum computing. Despite recent significant advancements in the qubit lifetimes,the origin of the loss mechanism for state-of-the-art qubits is still subject to investigation. Moreover, successful implementation of quantum error correction requires negligible correlated errors among qubits. Here, we realize ultra-coherent superconducting transmon qubits based on niobium capacitor electrodes, with lifetimes exceeding 0.4 ms. By employing a nearly quantum-limited readout chain based on a Josephson traveling wave parametric amplifier, we are able to simultaneously record bit-flip errors occurring in a multiple-qubit device, revealing that the bit-flip errors in two highly coherent qubits are strongly correlated. By introducing a novel time-resolved analysis synchronized with the operation of the pulse tube cooler in a dilution refrigerator, we find that a pulse tube mechanical shock causes nonequilibrium dynamics of the qubits, leading to correlated bit-flip errors as well as transitions outside of the computational state space. Our observations confirm that coherence improvements are still attainable in transmon qubits based on the superconducting material that has been commonly used in the field. In addition, our findings are consistent with qubit dynamics induced by two-level systems and quasiparticles, deepening our understanding of the qubit error mechanisms. Finally, these results inform possible new error-mitigation strategies by decoupling superconducting qubits from their mechanical environments.
Cavity optomechanics enables controlling mechanical motion via radiation pressure interaction, and has contributed to the quantum control of engineered mechanical systems ranging fromkg scale LIGO mirrors to nano-mechanical systems, enabling entanglement, squeezing of mechanical objects, to position measurements at the standard quantum limit, and quantum transduction. Yet, nearly all prior schemes have employed single- or few-mode optomechanical systems. In contrast, novel dynamics and applications are expected when utilizing optomechanical arrays and lattices, which enable to synthesize non-trivial band structures, and have been actively studied in the field of circuit QED. Superconducting microwave optomechanical circuits are a promising platform to implement such lattices, but have been compounded by strict scaling limitations. Here we overcome this challenge and realize superconducting circuit optomechanical lattices. We demonstrate non-trivial topological microwave modes in 1-D optomechanical chains as well as 2-D honeycomb lattices, realizing the canonical Su-Schrieffer-Heeger (SSH) model. Exploiting the embedded optomechanical interaction, we show that it is possible to directly measure the mode shapes, without using any local probe or inducing perturbation. This enables us to reconstruct the full underlying lattice Hamiltonian beyond tight-binding approximations, and directly measure the existing residual disorder. The latter is found to be sufficiently small to observe fully hybridized topological edge modes. Such optomechanical lattices, accompanied by the measurement techniques introduced, offers an avenue to explore out of equilibrium physics in optomechanical lattices such as quantum and quench dynamics, topological properties and more broadly, emergent nonlinear dynamics in complex optomechanical systems with a large number of degrees of freedoms.
Electrically actuated optomechanical resonators provide a route to quantum-coherent, bidirectional conversion of microwave and optical photons. Such devices could enable optical interconnectionof quantum computers based on qubits operating at microwave frequencies. Here we present a novel platform for microwave-to-optical conversion comprising a photonic crystal cavity made of single-crystal, piezoelectric gallium phosphide integrated on pre-fabricated niobium circuits on an intrinsic silicon substrate. The devices exploit spatially extended, sideband-resolved mechanical breathing modes at ∼ 3.2 GHz, with vacuum optomechanical coupling rates of up to g0/2π≈ 300 kHz. The mechanical modes are driven by integrated microwave electrodes via the inverse piezoelectric effect. We estimate that the system could achieve an electromechanical coupling rate to a superconducting transmon qubit of ∼ 200 kHz. Our work represents a decisive step towards integration of piezoelectro-optomechanical interfaces with superconducting quantum processors.
Encoding information onto optical fields is the backbone of modern telecommunication networks. Optical fibers offer low loss transport and vast bandwidth compared to electrical cables,and are currently also replacing copper cables for short-range communications. Optical fibers also exhibit significantly lower thermal conductivity, making optical interconnects attractive for interfacing with superconducting circuits and devices. Yet little is known about modulation at cryogenic temperatures. Here we demonstrate a proof-of-principle experiment, showing that currently employed Ti-doped LiNbO modulators maintain the Pockels coefficient at 3K—a base temperature for classical microwave amplifier circuitry. We realize electro-optical read-out of a superconducting electromechanical circuit to perform both coherent spectroscopy, measuring optomechanically-induced transparency, and incoherent thermometry, encoding the thermomechanical sidebands in an optical signal. Although the achieved noise figures are high, approaches that match the lower-bandwidth microwave signals, use integrated devices or materials with higher EO coefficient, should achieve added noise similar to current HEMT amplifiers, providing a route to parallel readout for emerging quantum or classical computing platforms.
Directional amplifiers are an important resource in quantum information processing, as they protect sensitive quantum systems from excess noise. Here, we propose an implementation ofphase-preserving and phase-sensitive directional amplifiers for microwave signals in an electromechanical setup comprising two microwave cavities and two mechanical resonators. We show that both can reach their respective quantum limits on added noise. In the reverse direction, they emit thermal noise stemming from the mechanical resonators and we discuss how this noise can be suppressed, a crucial aspect for technological applications. The isolation bandwidth in both is of the order of the mechanical linewidth divided by the amplitude gain. We derive the bandwidth and gain-bandwidth product for both and find that the phase-sensitive amplifier has an unlimited gain-bandwidth product. Our study represents an important step toward flexible, on-chip integrated nonreciprocal amplifiers of microwave signals.
We propose a device architecture capable of direct quantum electro-optical conversion of microwave to optical photons. The hybrid system consists of a planar superconducting microwavecircuit coupled to an integrated whispering-gallery-mode microresonator made from an electro-optical material. We show that electro-optical (vacuum) coupling rates g0 as large as∼2π(10−100) kHz are achievable with currently available technology, due to the small mode volume of the planar microwave resonator. Operating at millikelvin temperatures, such a converter would enable high-efficiency conversion of microwave to optical photons. We analyze the added noise, and show that maximum conversion efficiency is achieved for a multi-photon cooperativity of unity which can be reached with optical power as low as (1)mW.
and circuit quantum electrodynamics (cQED) [2]. Coupled to
artificial atoms in the form of superconducting"]qubits [3, 4], they now provide
a technologically promising and scalable platform for quantum information
processing tasks [2, 5-8]. Coupling these circuits, in situ, to other quantum
systems, such as molecules [9, 10], spin ensembles [11, 12], quantum dots [13]
or mechanical oscillators [14, 15] has been explored to realize hybrid systems
with extended functionality. Here, we couple a superconducting coplanar
waveguide resonator to a nano-coshmechanical oscillator, and demonstrate
all-microwave field controlled slowing, advancing and switching of microwave
signals. This is enabled by utilizing electromechanically induced transparency
[16-18], an effect analogous to electromagnetically induced transparency (EIT)
in atomic physics [19]. The exquisite temporal control gained over this
phenomenon provides a route towards realizing advanced protocols for storage of
both classical and quantum microwave signals [20-22], extending the toolbox of
control techniques of the microwave field.