Universal scaling of microwave dissipation in superconducting circuits

  1. Thibault Charpentier,
  2. Anton Khvalyuk,
  3. Lev Ioffe,
  4. Mikhail Feigel'man,
  5. Nicolas Roch,
  6. and Benjamin Sacépé
Improving the coherence of superconducting qubits is essential for advancing quantum technologies. While superconductors are theoretically perfect conductors, they consistently exhibit
residual energy dissipation when driven by microwave currents, limiting coherence times. Here, we report a universal scaling between microwave dissipation and the superfluid density, a bulk property of superconductors related to charge carrier density and disorder. Our analysis spans a wide range of superconducting materials and device geometries, from highly disordered amorphous films to ultra-clean systems with record-high quality factors, including resonators, 3D cavities, and transmon qubits. This scaling reveals an intrinsic bulk dissipation channel, independent of surface dielectric losses, that originates from a universal density of nonequilibrium quasiparticles trapped within disorder-induced spatial variations of the superconducting gap. Our findings define a fundamental limit to coherence set by intrinsic material properties and provide a predictive framework for selecting materials and the design of next-generation superconducting quantum circuits.

Reducing the impact of radioactivity on quantum circuits in a deep-underground facility

  1. Laura Cardani,
  2. Francesco Valenti,
  3. Nicola Casali,
  4. Gianluigi Catelani,
  5. Thibault Charpentier,
  6. Massimiliano Clemenza,
  7. Ivan Colantoni,
  8. Angelo Cruciani,
  9. Luca Gironi,
  10. Lukas Grünhaupt,
  11. Daria Gusenkova,
  12. Fabio Henriques,
  13. Marc Lagoin,
  14. Maria Martinez,
  15. Giorgio Pettinari,
  16. Claudia Rusconi,
  17. Oliver Sander,
  18. Alexey V. Ustinov,
  19. Marc Weber,
  20. Wolfgang Wernsdorfer,
  21. Marco Vignati,
  22. Stefano Pirro,
  23. and Ioan M. Pop
As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information
processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles. Here, we show that environmental radioactivity is a significant source of nonequilibrium quasiparticles. Moreover, ionizing radiation introduces time-correlated quasiparticle bursts in resonators on the same chip, further complicating quantum error correction. Operating in a deep-underground lead-shielded cryostat decreases the quasiparticle burst rate by a factor fifty and reduces dissipation up to a factor four, showcasing the importance of radiation abatement in future solid-state quantum hardware.

Phonon traps reduce the quasiparticle density in superconducting circuits

  1. Fabio Henriques,
  2. Francesco Valenti,
  3. Thibault Charpentier,
  4. Marc Lagoin,
  5. Clement Gouriou,
  6. Maria Martínez,
  7. Laura Cardani,
  8. Lukas Grünhaupt,
  9. Daria Gusenkova,
  10. Julian Ferrero,
  11. Sebastian T. Skacel,
  12. Wolfgang Wernsdorfer,
  13. Alexey V. Ustinov,
  14. Gianluigi Catelani,
  15. Oliver Sander,
  16. and Ioan M. Pop
Out of equilibrium quasiparticles (QPs) are one of the main sources of decoherence in superconducting quantum circuits, and are particularly detrimental in devices with high kinetic
inductance, such as high impedance resonators, qubits, and detectors. Despite significant progress in the understanding of QP dynamics, pinpointing their origin and decreasing their density remain outstanding tasks. The cyclic process of recombination and generation of QPs implies the exchange of phonons between the superconducting thin film and the underlying substrate. Reducing the number of substrate phonons with frequencies exceeding the spectral gap of the superconductor should result in a reduction of QPs. Indeed, we demonstrate that surrounding high impedance resonators made of granular aluminum (grAl) with lower gapped thin film aluminum islands increases the internal quality factors of the resonators in the single photon regime, suppresses the noise, and reduces the rate of observed QP bursts. The aluminum islands are positioned far enough from the resonators to be electromagnetically decoupled, thus not changing the resonator frequency, nor the loading. We therefore attribute the improvements observed in grAl resonators to phonon trapping at frequencies close to the spectral gap of aluminum, well below the grAl gap.