We demonstrate diabatic two-qubit gates with Pauli error rates down to 4.3(2)⋅10−3 in as fast as 18 ns using frequency-tunable superconducting qubits. This is achieved by synchronizingthe entangling parameters with minima in the leakage channel. The synchronization shows a landscape in gate parameter space that agrees with model predictions and facilitates robust tune-up. We test both iSWAP-like and CPHASE gates with cross-entropy benchmarking. The presented approach can be extended to multibody operations as well.
Statistical mechanics is founded on the assumption that a system can reach thermal equilibrium, regardless of the starting state. Interactions between particles facilitate thermalization,but, can interacting systems always equilibrate regardless of parameter values\,? The energy spectrum of a system can answer this question and reveal the nature of the underlying phases. However, most experimental techniques only indirectly probe the many-body energy spectrum. Using a chain of nine superconducting qubits, we implement a novel technique for directly resolving the energy levels of interacting photons. We benchmark this method by capturing the intricate energy spectrum predicted for 2D electrons in a magnetic field, the Hofstadter butterfly. By increasing disorder, the spatial extent of energy eigenstates at the edge of the energy band shrink, suggesting the formation of a mobility edge. At strong disorder, the energy levels cease to repel one another and their statistics approaches a Poisson distribution – the hallmark of transition from the thermalized to the many-body localized phase. Our work introduces a new many-body spectroscopy technique to study quantum phases of matter.
Many superconducting qubit systems use the dispersive interaction between the qubit and a coupled harmonic resonator to perform quantum state measurement. Previous works have foundthat such measurements can induce state transitions in the qubit if the number of photons in the resonator is too high. We investigate these transitions and find that they can push the qubit out of the two-level subspace. Furthermore, these transitions show resonant behavior as a function of photon number. We develop a theory for these observations based on level crossings within the Jaynes-Cummings ladder, with transitions mediated by terms in the Hamiltonian which are typically ignored by the rotating wave approximation. We confirm the theory by measuring the photon occupation of the resonator when transitions occur while varying the detuning between the qubit and resonator.
The intriguing many-body phases of quantum matter arise from the interplay of particle interactions, spatial symmetries, and external fields. Generating these phases in an engineeredsystem could provide deeper insight into their nature and the potential for harnessing their unique properties. However, concurrently bringing together the main ingredients for realizing many-body phenomena in a single experimental platform is a major challenge. Using superconducting qubits, we simultaneously realize synthetic magnetic fields and strong particle interactions, which are among the essential elements for studying quantum magnetism and fractional quantum Hall (FQH) phenomena. The artificial magnetic fields are synthesized by sinusoidally modulating the qubit couplings. In a closed loop formed by the three qubits, we observe the directional circulation of photons, a signature of broken time-reversal symmetry. We demonstrate strong interactions via the creation of photon-vacancies, or „holes“, which circulate in the opposite direction. The combination of these key elements results in chiral groundstate currents, the first direct measurement of persistent currents in low-lying eigenstates of strongly interacting bosons. The observation of chiral currents at such a small scale is interesting and suggests that the rich many-body physics could survive to smaller scales. We also motivate the feasibility of creating FQH states with near future superconducting technologies. Our work introduces an experimental platform for engineering quantum phases of strongly interacting photons and highlight a path toward realization of bosonic FQH states.
The discovery of topological phases in condensed matter systems has changed the modern conception of phases of matter. The global nature of topological ordering makes these phases robustand hence promising for applications. However, the non-locality of this ordering makes direct experimental studies an outstanding challenge, even in the simplest model topological systems, and interactions among the constituent particles adds to this challenge. Here we demonstrate a novel dynamical method to explore topological phases in both interacting and non-interacting systems, by employing the exquisite control afforded by state-of-the-art superconducting quantum circuits. We utilize this method to experimentally explore the well-known Haldane model of topological phase transitions by directly measuring the topological invariants of the system. We construct the topological phase diagram of this model and visualize the microscopic evolution of states across the phase transition, tasks whose experimental realizations have remained elusive. Furthermore, we developed a new qubit architecture that allows simultaneous control over every term in a two-qubit Hamiltonian, with which we extend our studies to an interacting Hamiltonian and discover the emergence of an interaction-induced topological phase. Our implementation, involving the measurement of both global and local textures of quantum systems, is close to the original idea of quantum simulation as envisioned by R. Feynman, where a controllable quantum system is used to investigate otherwise inaccessible quantum phenomena. This approach demonstrates the potential of superconducting qubits for quantum simulation and establishes a powerful platform for the study of topological phases in quantum systems.
We introduce a frequency-multiplexed readout scheme for superconducting phase
qubits. Using a quantum circuit with four phase qubits, we couple each qubit to
a separate lumped-elementsuperconducting readout resonator, with the readout
resonators connected in parallel to a single measurement line. The readout
resonators and control electronics are designed so that all four qubits can be
read out simultaneously using frequency multiplexing on the one measurement
line. This technology provides a highly efficient and compact means for reading
out multiple qubits, a significant advantage for scaling up to larger numbers
of qubits.