In-situ bandaged Josephson junctions for superconducting quantum processors

  1. Alexander Bilmes,
  2. Alexander K. Neumann,
  3. Serhii Volosheniuk,
  4. Alexey V. Ustinov,
  5. and Jürgen Lisenfeld
Shadow evaporation is commonly used to micro-fabricate the key element of superconducting qubits — the Josephson junction. However, in conventional two-angle deposition circuit
topology, unwanted stray Josephson junctions are created which contribute to dielectric loss. So far, this could be avoided by shorting the stray junctions with a so-called bandage layer deposited in an additional lithography step. Here, we present an improved shadow evaporation technique allowing one to deposit submicrometer-sized Josephson junctions together with bandage layers in a single lithography step. We also show that junction aging is signficantly reduced when junction electrodes and the bandage layers are oxidized in an oxygen atmosphere directly after deposition.

Quantum Sensors for Microscopic Tunneling Systems

  1. Alexander Bilmes,
  2. Serhii Volosheniuk,
  3. Jan D. Brehm,
  4. Alexey V. Ustinov,
  5. and Jürgen Lisenfeld
The anomalous low-temperature properties of glasses arise from intrinsic excitable entities, so-called tunneling Two-Level-Systems (TLS), whose microscopic nature has been baffling
solid-state physicists for decades. TLS have become particularly important for micro-fabricated quantum devices such as superconducting qubits, where they are a major source of decoherence. Here, we present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films. The material is used as the dielectric in a capacitor that shunts the Josephson junction of a superconducting qubit. In such a hybrid quantum system the qubit serves as an interface to detect and control individual TLS. We demonstrate spectroscopic measurements of TLS resonances, evaluate their coupling to applied strain and DC-electric fields, and find evidence of strong interaction between coherent TLS in the sample material. Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects and to develop low-loss dielectrics that are urgently required for the advancement of superconducting quantum computers.