We present the design and experimental characterization of a kinetic-inductance traveling-wave parametric amplifier (KI-TWPA) for sub-GHz frequencies. KI-TWPAs amplify signals throughnonlinear mixing processes supported by the nonlinear kinetic inductance of a superconducting transmission line. The device described here utilizes a compactly meandered TiN microstrip transmission line to achieve the length needed to amplify sub-GHz signals. It is operated in a frequency translating mode where the amplified signal tone is terminated at the output of the amplifier, and the idler tone at approximately 2.5~GHz is brought out of the cryostat. By varying the pump frequency, a gain of up to 22 dB was achieved in a tunable range from about 450 to 850~MHz. Use of TiN as the nonlinear element allows for a reduction of the required pump power by roughly an order of magnitude relative to NbTiN, which has been used for previous KI-TWPA implementations. This amplifier has the potential to enable high-sensitivity and high-speed measurements in a wide range of applications, such as quantum computing, astrophysics, and dark matter detection.
We present broadband parametric amplifiers based on the kinetic inductance of superconducting NbTiN thin films in an artificial (lumped-element) transmission line architecture. We demonstratetwo amplifier designs implementing different phase matching techniques: periodic impedance loadings, and resonator phase shifters placed periodically along the transmission line. Our design offers several advantages over previous CPW-based amplifiers, including intrinsic 50 ohm characteristic impedance, natural suppression of higher pump harmonics, lower required pump power, and shorter total trace length. Experimental realizations of both versions of the amplifiers are demonstrated. With a transmission line length of 20 cm, we have achieved gains of 15 dB over several GHz of bandwidth.
We have designed, fabricated and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injectinga DC current through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Qi>180,000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.
Superconducting parametric amplifiers have great promise for quantum-limited readout of superconducting qubits and detectors. Until recently, most superconducting parametric amplifiershad been based on resonant structures, limiting their bandwidth and dynamic range. Broadband traveling-wave parametric amplifiers based both on the nonlinear kinetic inductance of superconducting thin films and on Josephson junctions are in development. By modifying the dispersion property of the amplifier circuit, referred to as dispersion engineering, the gain can be greatly enhanced and the size can be reduced. We present two theoretical frameworks for analyzing and understanding such parametric amplifiers: (1) generalized coupled-mode equations and (2) a finite difference time domain (FDTD) model combined with a small signal analysis. We show how these analytical and numerical tools may be used to understand device performance.