Quantum computation architecture based on d-level systems, or qudits, has attracted considerable attention recently due to their enlarged Hilbert space. Extensive theoretical and experimentalstudies have addressed aspects of algorithms and benchmarking techniques for qudit-based quantum computation and quantum information processing. Here, we report a physical realization of qudit with upto 4 embedded levels in a superconducting transmon, demonstrating high-fidelity initialization, manipulation, and simultaneous multi-level readout. In addition to constructing SU(d) operations and benchmarking protocols for quantum state tomography, quantum process tomography, and randomized benchmarking etc, we experimentally carry out these operations for d=3 and d=4. Moreover, we perform prototypical quantum algorithms and observe outcomes consistent with expectations. Our work will hopefully stimulate further research interest in developing manipulation protocols and efficient applications for quantum processors with qudits.
Accurate control of qubits is the central requirement for building functional quantum processors. For the current superconducting quantum processor, high-fidelity control of qubitsis mainly based on independently calibrated microwave pulses, which could differ from each other in frequencies, amplitudes, and phases. With this control strategy, the needed physical source could be challenging, especially when scaling up to large-scale quantum processors is considered. Inspired by Kane’s proposal for spin-based quantum computing, here, we explore theoretically the possibility of baseband flux control of superconducting qubits with only shared and always-on microwave drives. In our strategy, qubits are by default far detuned from the drive during system idle periods, qubit readout and baseband flux-controlled two-qubit gates can thus be realized with minimal impacts from the always-on drive. By contrast, during working periods, qubits are tuned on resonance with the drive and single-qubit gates can be realized. Therefore, universal qubit control can be achieved with only baseband flux pulses and always-on shared microwave drives. We apply this strategy to the qubit architecture where tunable qubits are coupled via a tunable coupler, and the analysis shows that high-fidelity qubit control is possible. Besides, the baseband control strategy needs fewer physical resources, such as control electronics and cooling power in cryogenic systems, than that of microwave control. More importantly, the flexibility of baseband flux control could be employed for addressing the non-uniformity issue of superconducting qubits, potentially allowing the realization of multiplexing and cross-bar technologies and thus controlling large numbers of qubits with fewer control lines. We thus expect that baseband control with shared microwave drives can help build large-scale superconducting quantum processors.
Maintaining or even improving gate performance with growing numbers of parallel controlled qubits is a vital requirement towards fault-tolerant quantum computing. For superconductingquantum processors, though isolated one- or two-qubit gates have been demonstrated with high-fidelity, implementing these gates in parallel commonly show worse performance. Generally, this degradation is attributed to various crosstalks between qubits, such as quantum crosstalk due to residual inter-qubit coupling. An understanding of the exact nature of these crosstalks is critical to figuring out respective mitigation schemes and improved qubit architecture designs with low crosstalk. Here we give a theoretical analysis of quantum crosstalk impact on simultaneous gate operations in a qubit architecture, where fixed-frequency transmon qubits are coupled via a tunable bus, and sub-100-ns controlled-Z (CZ) gates can be realized by applying a baseband flux pulse on the bus. Our analysis shows that for microwave-driven single qubit gates, the dressing from qubit-qubit coupling can cause non-negligible cross-driving errors when qubits operate near frequency collision regions. During CZ gate operations, although unwanted near-neighbor interactions are nominally turned off, sub-MHz parasitic next-near-neighbor interactions involving spectator qubits can still exist, causing considerable leakage or control error when one operates qubit systems around these parasitic resonance points. To ensure high-fidelity simultaneous operations, this could rise a request to figure out a better way to balance the gate error from target qubit systems themselves and the error from non-participating spectator qubits. Overall, our analysis suggests that towards useful quantum processors, the qubit architecture should be examined carefully in the context of high-fidelity simultaneous gate operations in a scalable qubit lattice.
Significant progress has been made in building large-scale superconducting quantum processors based on flip-chip technology. In this work, we use the flip-chip technology to realizea modified transmon qubit, donated as the „flipmon“, whose large shunt capacitor is replaced by a vacuum-gap parallel plate capacitor. To further reduce the qubit footprint, we place one of the qubit pads and a single Josephson junction on the bottom chip and the other pad on the top chip which is galvanically connected with the single Josephson junction through an indium bump. The electric field participation ratio can arrive at nearly 53% in air when the vacuum-gap is about 5 microns, and thus potentially leading to a lower dielectric loss. The coherence times of the flipmons are measured in the range of 30-60 microseconds, which are comparable with that of traditional transmons with similar fabrication processes. The electric field simulation indicates that the metal-air interface’s participation ratio increases significantly and may dominate the qubit’s decoherence. This suggests that more careful surface treatment needs to be considered. No evidence shows that the indium bumps inside the flipmons cause significant decoherence. With well-designed geometry and good surface treatment, the coherence of the flipmons can be further improved.
By using the dry etching process of tantalum (Ta) film, we had obtained transmon qubit with the best lifetime (T1) 503 us, suggesting that the dry etching process can be adopted inthe following multi-qubit fabrication with Ta film. We also compared the relaxation and coherence times of transmons made with different materials (Ta, Nb and Al) with the same design and fabrication processes of Josephson junction, we found that samples prepared with Ta film had the best performance, followed by those with Al film and Nb film. We inferred that the reason for this difference was due to the different loss of oxide materials located at the metal-air interface.