High-fidelity measurement of qubits encoded in multilevel superconducting circuits

  1. Salvatore S. Elder,
  2. Christopher S. Wang,
  3. Philip Reinhold,
  4. Connor T. Hann,
  5. Kevin S. Chou,
  6. Brian J. Lester,
  7. Serge Rosenblum,
  8. Luigi Frunzio,
  9. Liang Jiang,
  10. and Robert J. Schoelkopf
Qubit measurements are central to quantum information processing. In the field of superconducting qubits, standard readout techniques are not only limited by the signal-to-noise ratio,
but also by state relaxation during the measurement. In this work, we demonstrate that the limitation due to relaxation can be suppressed by using the many-level Hilbert space of superconducting circuits: in a multilevel encoding, the measurement is only corrupted when multiple errors occur. Employing this technique, we show that we can directly resolve transmon gate errors at the level of one part in 103. Extending this idea, we apply the same principles to the measurement of a logical qubit encoded in a bosonic mode and detected with a transmon ancilla, implementing a proposal by Hann et al. [Phys. Rev. A \textbf{98} 022305 (2018)]. Qubit state assignments are made based on a sequence of repeated readouts, further reducing the overall infidelity. This approach is quite general and several encodings are studied; the codewords are more distinguishable when the distance between them is increased with respect to photon loss. The tradeoff between multiple readouts and state relaxation is explored and shown to be consistent with the photon-loss model. We report a logical assignment infidelity of 5.8×10−5 for a Fock-based encoding and 4.2×10−3 for a QEC code (the S=2,N=1 binomial code). Our results will not only improve the fidelity of quantum information applications, but also enable more precise characterization of process or gate errors.

Error-corrected gates on an encoded qubit

  1. Philip Reinhold,
  2. Serge Rosenblum,
  3. Wen-Long Ma,
  4. Luigi Frunzio,
  5. Liang Jiang,
  6. and Robert J. Schoelkopf
To solve classically hard problems, quantum computers need to be resilient to the influence of noise and decoherence. In such a fault-tolerant quantum computer, noise-induced errors
must be detected and corrected in real-time to prevent them from propagating between components. This requirement is especially pertinent while applying quantum gates, when the interaction between components can cause errors to quickly spread throughout the system. However, the large overhead involved in most fault-tolerant architectures makes implementing these systems a daunting task, which motivates the search for hardware-efficient alternatives. Here, we present a gate enacted by a multilevel ancilla transmon on a cavity-encoded logical qubit that is fault-tolerant with respect to decoherence in both the ancilla and the encoded qubit. We maintain the purity of the encoded qubit in the presence of ancilla errors by detecting those errors in real-time, and applying the appropriate corrections. We show a reduction of the logical gate error by a factor of two in the presence of naturally occurring decoherence, and demonstrate resilience against ancilla bit-flips and phase-flips by observing a sixfold suppression of the gate error with increased energy relaxation, and a fourfold suppression with increased dephasing noise. The results demonstrate that bosonic logical qubits can be controlled by error-prone ancilla qubits without inheriting the ancilla’s inferior performance. As such, error-corrected ancilla-enabled gates are an important step towards fully fault-tolerant processing of bosonic qubits.

Hardware-efficient quantum random access memory with hybrid quantum acoustic systems

  1. Connor T. Hann,
  2. Chang-Ling Zou,
  3. Yaxing Zhang,
  4. Yiwen Chu,
  5. Robert J. Schoelkopf,
  6. Steven M. Girvin,
  7. and Liang Jiang
Hybrid quantum systems in which acoustic resonators couple to superconducting qubits are promising quantum information platforms. High quality factors and small mode volumes make acoustic
modes ideal quantum memories, while the qubit-phonon coupling enables the initialization and manipulation of quantum states. We present a scheme for quantum computing with multimode quantum acoustic systems, and based on this scheme, propose a hardware-efficient implementation of a quantum random access memory (qRAM). Quantum information is stored in high-Q phonon modes, and couplings between modes are engineered by applying off-resonant drives to a transmon qubit. In comparison to existing proposals that involve directly exciting the qubit, this scheme can offer a substantial improvement in gate fidelity for long-lived acoustic modes. We show how these engineered phonon-phonon couplings can be used to access data in superposition according to the state of designated address modes–implementing a qRAM on a single chip.

Entangling Bosonic Modes via an Engineered Exchange Interaction

  1. Yvonne Y. Gao,
  2. Brian J. Lester,
  3. Kevin Chou,
  4. Luigi Frunzio,
  5. Michel H. Devoret,
  6. Liang Jiang,
  7. S. M. Girvin,
  8. and Robert J. Schoelkopf
The realization of robust universal quantum computation with any platform ultimately requires both the coherent storage of quantum information and (at least) one entangling operation
between individual elements. The use of continuous-variable bosonic modes as the quantum element is a promising route to preserve the coherence of quantum information against naturally-occurring errors. However, operations between bosonic modes can be challenging. In analogy to the exchange interaction between discrete-variable spin systems, the exponential-SWAP unitary [UE(θc)] can coherently transfer the states between two bosonic modes, regardless of the chosen encoding, realizing a deterministic entangling operation for certain θc. Here, we develop an efficient circuit to implement UE(θc) and realize the operation in a three-dimensional circuit QED architecture. We demonstrate high-quality deterministic entanglement between two cavity modes with several different encodings. Our results provide a crucial primitive necessary for universal quantum computation using bosonic modes.

Robust readout of bosonic qubits in the dispersive coupling regime

  1. Connor T. Hann,
  2. Salvatore S. Elder,
  3. Christopher S. Wang,
  4. Kevin Chou,
  5. Robert J. Schoelkopf,
  6. and Liang Jiang
High-fidelity qubit measurements play a crucial role in quantum computation, communication, and metrology. In recent experiments, it has been shown that readout fidelity may be improved
by performing repeated quantum non-demolition (QND) readouts of a qubit’s state through an ancilla. For a qubit encoded in a two-level system, the fidelity of such schemes is limited by the fact that a single error can destroy the information in the qubit. On the other hand, if a bosonic system is used, this fundamental limit could be overcome by utilizing higher levels such that a single error still leaves states distinguishable. In this work, we present a robust readout scheme, applicable to bosonic systems dispersively coupled to an ancilla, which leverages both repeated QND readouts and higher-level encodings to asymptotically suppress the effects of qubit/cavity relaxation and individual measurement infidelity. We calculate the measurement fidelity in terms of general experimental parameters, provide an information-theoretic description of the scheme, and describe its application to several encodings, including cat and binomial codes.

Schrodinger’s catapult: Launching multiphoton quantum states from a microwave cavity memory

  1. Wolfgang Pfaff,
  2. Christopher J Axline,
  3. Luke D Burkhart,
  4. Uri Vool,
  5. Philip Reinhold,
  6. Luigi Frunzio,
  7. Liang Jiang,
  8. Michel H. Devoret,
  9. and Robert J. Schoelkopf
Encoding quantum states in complex multiphoton fields can overcome loss during signal transmission in a quantum network. Transmitting quantum information encoded in this way requires
that locally stored states can be converted to propagating fields. Here we experimentally show the controlled conversion of multiphoton quantum states, like „Schr\“odinger cat“ states, from a microwave cavity quantum memory into propagating modes. By parametric conversion using the nonlinearity of a single Josephson junction, we can release the cavity state in ~500 ns, about 3 orders of magnitude faster than its intrinsic lifetime. This `catapult‘ faithfully converts arbitrary cavity fields to traveling signals with an estimated efficiency of > 90%, enabling on-demand generation of complex itinerant quantum states. Importantly, the release process can be controlled precisely on fast time scales, allowing us to generate entanglement between the cavity and the traveling mode by partial conversion. Our system can serve as the backbone of a microwave quantum network, paving the way towards error-correctable distribution of quantum information and the transfer of highly non-classical states to hybrid quantum systems.

Quantum Channel Construction with Circuit Quantum Electrodynamics

  1. Chao Shen,
  2. Kyungjoo Noh,
  3. Victor V. Albert,
  4. Stefan Krastanov,
  5. Michel H. Devoret,
  6. Robert J. Schoelkopf,
  7. S. M. Girvin,
  8. and Liang Jiang
Quantum channels can describe all transformations allowed by quantum mechanics. We provide an explicit universal protocol to construct all possible quantum channels, using a single
qubit ancilla with quantum non-demolition readout and adaptive control. Our construction is efficient in both physical resources and circuit depth, and can be demonstrated using superconducting circuits and various other physical platforms. There are many applications of quantum channel construction, including system stabilization and quantum error correction, Markovian and exotic channel simulation, implementation of generalized quantum measurements and more general quantum instruments. Efficient construction of arbitrary quantum channels opens up exciting new possibilities for quantum control, quantum sensing and information processing tasks.

Implementing a Universal Gate Set on a Logical Qubit Encoded in an Oscillator

  1. Reinier W. Heeres,
  2. Philip Reinhold,
  3. Nissim Ofek,
  4. Luigi Frunzio,
  5. Liang Jiang,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
A logical qubit is a two-dimensional subspace of a higher dimensional system, chosen such that it is possible to detect and correct the occurrence of certain errors. Manipulation of
the encoded information generally requires arbitrary and precise control over the entire system. Whether based on multiple physical qubits or larger dimensional modes such as oscillators, the individual elements in realistic devices will always have residual interactions which must be accounted for when designing logical operations. Here we demonstrate a holistic control strategy which exploits accurate knowledge of the Hamiltonian to manipulate a coupled oscillator-transmon system. We use this approach to realize high-fidelity (99%, inferred), decoherence-limited operations on a logical qubit encoded in a superconducting cavity resonator using four-component cat states. Our results show the power of applying numerical techniques to control linear oscillators and pave the way for utilizing their large Hilbert space as a resource in quantum information processing.

A coaxial line architecture for integrating and scaling 3D cQED systems

  1. Christopher Axline,
  2. Matthew Reagor,
  3. Reinier W. Heeres,
  4. Philip Reinhold,
  5. Chen Wang,
  6. Kevin Shain,
  7. Wolfgang Pfaff,
  8. Yiwen Chu,
  9. Luigi Frunzio,
  10. and Robert J. Schoelkopf
Numerous loss mechanisms can limit coherence and scalability of planar and 3D-based circuit quantum electrodynamics (cQED) devices, particularly due to their packaging. The low loss
and natural isolation of 3D enclosures make them good candidates for coherent scaling. We introduce a coaxial transmission line device architecture with coherence similar to traditional 3D cQED systems. Measurements demonstrate well-controlled external and on-chip couplings, a spectrum absent of cross-talk or spurious modes, and excellent resonator and qubit lifetimes. We integrate a resonator-qubit system in this architecture with a seamless 3D cavity, and separately pattern a qubit, readout resonator, Purcell filter and high-Q stripline resonator on a single chip. Device coherence and its ease of integration make this a promising tool for complex experiments.

Surface participation and dielectric loss in superconducting qubits

  1. Chen Wang,
  2. Christopher Axline,
  3. Yvonne Y. Gao,
  4. Teresa Brecht,
  5. Luigi Frunzio,
  6. Michel H. Devoret,
  7. and Robert J. Schoelkopf
We study the energy relaxation times (T1) of superconducting transmon qubits in 3D cavities as a function of dielectric participation ratios of material surfaces. This surface participation
ratio, representing the fraction of electric field energy stored in a dissipative surface layer, is computed by a two-step finite-element simulation and experimentally varied by qubit geometry. With a clean electromagnetic environment and suppressed non-equilibrium quasiparticle density, we find an approximately proportional relation between the transmon relaxation rates and surface participation ratios. These results suggest dielectric dissipation arising from material interfaces is the major limiting factor for the T1 of transmons in 3D cQED architecture. Our analysis also supports the notion of spatial discreteness of surface dielectric dissipation.