2D transmons with lifetimes and coherence times exceeding 1 millisecond

  1. Matthew P. Bland,
  2. Faranak Bahrami,
  3. Jeronimo G.C. Martinez,
  4. Paal H. Prestegaard,
  5. Basil M. Smitham,
  6. Atharv Joshi,
  7. Elizabeth Hedrick,
  8. Alex Pakpour-Tabrizi,
  9. Shashwat Kumar,
  10. Apoorv Jindal,
  11. Ray D. Chang,
  12. Ambrose Yang,
  13. Guangming Cheng,
  14. Nan Yao,
  15. Robert J. Cava,
  16. Nathalie P. de Leon,
  17. and Andrew A. Houck
Materials improvements are a powerful approach to reducing loss and decoherence in superconducting qubits because such improvements can be readily translated to large scale processors.
Recent work improved transmon coherence by utilizing tantalum (Ta) as a base layer and sapphire as a substrate. The losses in these devices are dominated by two-level systems (TLSs) with comparable contributions from both the surface and bulk dielectrics, indicating that both must be tackled to achieve major improvements in the state of the art. Here we show that replacing the substrate with high-resistivity silicon (Si) dramatically decreases the bulk substrate loss, enabling 2D transmons with time-averaged quality factors (Q) exceeding 1.5 x 10^7, reaching a maximum Q of 2.5 x 10^7, corresponding to a lifetime (T_1) of up to 1.68 ms. This low loss allows us to observe decoherence effects related to the Josephson junction, and we use improved, low-contamination junction deposition to achieve Hahn echo coherence times (T_2E) exceeding T_1. We achieve these material improvements without any modifications to the qubit architecture, allowing us to readily incorporate standard quantum control gates. We demonstrate single qubit gates with 99.994% fidelity. The Ta-on-Si platform comprises a simple material stack that can potentially be fabricated at wafer scale, and therefore can be readily translated to large-scale quantum processors.

Eliminating Surface Oxides of Superconducting Circuits with Noble Metal Encapsulation

  1. Ray D. Chang,
  2. Nana Shumiya,
  3. Russell A. McLellan,
  4. Yifan Zhang,
  5. Matthew P. Bland,
  6. Faranak Bahrami,
  7. Junsik Mun,
  8. Chenyu Zhou,
  9. Kim Kisslinger,
  10. Guangming Cheng,
  11. Alexander C. Pakpour-Tabrizi,
  12. Nan Yao,
  13. Yimei Zhu,
  14. Mingzhao Liu,
  15. Robert J. Cava,
  16. Sarang Gopalakrishnan,
  17. Andrew A. Houck,
  18. and Nathalie P. de Leon
The lifetime of superconducting qubits is limited by dielectric loss, and a major source of dielectric loss is the native oxide present at the surface of the superconducting metal.
Specifically, tantalum-based superconducting qubits have been demonstrated with record lifetimes, but a major source of loss is the presence of two-level systems (TLSs) in the surface tantalum oxide. Here, we demonstrate a strategy for avoiding oxide formation by encapsulating the tantalum with noble metals that do not form native oxide. By depositing a few nanometers of Au or AuPd alloy before breaking vacuum, we completely suppress tantalum oxide formation. Microwave loss measurements of superconducting resonators reveal that the noble metal is proximitized, with a superconducting gap over 80% of the bare tantalum at thicknesses where the oxide is fully suppressed. We find that losses in resonators fabricated by subtractive etching are dominated by oxides on the sidewalls, suggesting total surface encapsulation by additive fabrication as a promising strategy for eliminating surface oxide TLS loss in superconducting qubits.

Disentangling Losses in Tantalum Superconducting Circuits

  1. Kevin D. Crowley,
  2. Russell A. McLellan,
  3. Aveek Dutta,
  4. Nana Shumiya,
  5. Alexander P.M. Place,
  6. Xuan Hoang Le,
  7. Youqi Gang,
  8. Trisha Madhavan,
  9. Nishaad Khedkar,
  10. Yiming Cady Feng,
  11. Esha A. Umbarkar,
  12. Xin Gui,
  13. Lila V. H. Rodgers,
  14. Yichen Jia,
  15. Mayer M. Feldman,
  16. Stephen A. Lyon,
  17. Mingzhao Liu,
  18. Robert J. Cava,
  19. Andrew A. Houck,
  20. and Nathalie P. de Leon
Superconducting qubits are a leading system for realizing large scale quantum processors, but overall gate fidelities suffer from coherence times limited by microwave dielectric loss.
Recently discovered tantalum-based qubits exhibit record lifetimes exceeding 0.3 ms. Here we perform systematic, detailed measurements of superconducting tantalum resonators in order to disentangle sources of loss that limit state-of-the-art tantalum devices. By studying the dependence of loss on temperature, microwave photon number, and device geometry, we quantify materials-related losses and observe that the losses are dominated by several types of saturable two level systems (TLSs), with evidence that both surface and bulk related TLSs contribute to loss. Moreover, we show that surface TLSs can be altered with chemical processing. With four different surface conditions, we quantitatively extract the linear absorption associated with different surface TLS sources. Finally, we quantify the impact of the chemical processing at single photon powers, the relevant conditions for qubit device performance. In this regime we measure resonators with internal quality factors ranging from 5 to 15 x 10^6, comparable to the best qubits reported. In these devices the surface and bulk TLS contributions to loss are comparable, showing that systematic improvements in materials on both fronts will be necessary to improve qubit coherence further.

New material platform for superconducting transmon qubits with coherence times exceeding 0.3 milliseconds

  1. Alex P. M. Place,
  2. Lila V. H. Rodgers,
  3. Pranav Mundada,
  4. Basil M. Smitham,
  5. Mattias Fitzpatrick,
  6. Zhaoqi Leng,
  7. Anjali Premkumar,
  8. Jacob Bryon,
  9. Sara Sussman,
  10. Guangming Cheng,
  11. Trisha Madhavan,
  12. Harshvardhan K. Babla,
  13. Berthold Jäck,
  14. Andras Gyenis,
  15. Nan Yao,
  16. Robert J. Cava,
  17. Nathalie P. de Leon,
  18. and Andrew A. Houck
The superconducting transmon qubit is a leading platform for quantum computing and quantum science. Building large, useful quantum systems based on transmon qubits will require significant
improvements in qubit relaxation and coherence times, which are orders of magnitude shorter than limits imposed by bulk properties of the constituent materials. This indicates that relaxation likely originates from uncontrolled surfaces, interfaces, and contaminants. Previous efforts to improve qubit lifetimes have focused primarily on designs that minimize contributions from surfaces. However, significant improvements in the lifetime of two-dimensional transmon qubits have remained elusive for several years. Here, we fabricate two-dimensional transmon qubits that have both lifetimes and coherence times with dynamical decoupling exceeding 0.3 milliseconds by replacing niobium with tantalum in the device. We have observed increased lifetimes for seventeen devices, indicating that these material improvements are robust, paving the way for higher gate fidelities in multi-qubit processors.