The innate complexity of solid state physics exposes superconducting quantum circuits to interactions with uncontrolled degrees of freedom degrading their coherence. By using a simplestabilization sequence we show that a superconducting fluxonium qubit is coupled to a two-level system (TLS) environment of unknown origin, with a relatively long energy relaxation time exceeding 50ms. Implementing a quantum Szilard engine with an active feedback control loop allows us to decide whether the qubit heats or cools its TLS environment. The TLSs can be cooled down resulting in a four times lower qubit population, or they can be heated to manifest themselves as a negative temperature environment corresponding to a qubit population of ∼80%. We show that the TLSs and the qubit are each other’s dominant loss mechanism and that the qubit relaxation is independent of the TLS populations. Understanding and mitigating TLS environments is therefore not only crucial to improve qubit lifetimes but also to avoid non-Markovian qubit dynamics.
The rapid progress in quantum information processing leads to a rising demand for devices to control the propagation of electromagnetic wave pulses and to ultimately realize a universaland efficient quantum memory. While in recent years significant progress has been made to realize slow light and quantum memories with atoms at optical frequencies, superconducting circuits in the microwave domain still lack such devices. Here, we demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide, forming a waveguide quantum electrodynamics system. We analyze two complementary approaches, one relying on dressed states of the Autler-Townes splitting, and the other based on a tailored dispersion profile using the qubits tunability. Our time-resolved experiments show reduced group velocities of down to a factor of about 1500 smaller than in vacuum. Depending on the method used, the speed of light can be controlled with an additional microwave tone or an effective qubit detuning. Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures and open the door to microwave dispersion engineering in the quantum regime.
Reading out the state of superconducting artificial atoms typically relies on dispersive coupling to a readout resonator. For a given system noise temperature, increasing the circulatingphoton number n¯ in the resonator enables a shorter measurement time and is therefore expected to reduce readout errors caused by spontaneous atom transitions. However, increasing n¯ is generally observed to also increase these transition rates. Here we present a fluxonium artificial atom in which we measure an overall flat dependence of the transition rates between its first two states as a function of n¯, up to n¯≈200. Despite the fact that we observe the expected decrease of the dispersive shift with increasing readout power, the signal-to-noise ratio continuously improves with increasing n¯. Even without the use of a parametric amplifier, at n¯=74, we measure fidelities of 99% and 93% for feedback-assisted ground and excited state preparation, respectively.
Control and readout of superconducting quantum bits (qubits) require microwave pulses with gigahertz frequencies and nanosecond precision. To generate and analyze these microwave pulses,we developed a versatile FPGA-based electronics platform. While basic functionality is directly handled within the FPGA, guaranteeing highest accuracy on the nanosecond timescale, more complex control schemes render impractical to implement in hardware.
To provide deterministic timing and low latency with high flexibility, we developed the Taskrunner framework. It enables the execution of complex control schemes, so-called user tasks, on the real-time processing unit (RPU) of a heterogeneous Multiprocessor System-on-Chip (MPSoC). These user tasks are specified conveniently using standard C language and are compiled automatically by the MPSoC platform when loaded onto the RPU. We present the architecture of the Taskrunner framework as well as timing benchmarks and discuss applications in the field of quantum computing.
We developed a versatile integrated control and readout instrument for experiments with superconducting quantum bits (qubits), based on a field-programmable gate array (FPGA) platform.Using this platform, we perform measurement-based, closed-loop feedback operations with 428ns platform latency. The feedback capability is instrumental in realizing active reset initialization of the qubit into the ground state in a time much shorter than its energy relaxation time T1. We show experimental results demonstrating reset of a fluxonium qubit with 99.4% fidelity, using a readout-and-drive pulse sequence approximately 1.5μs long. Compared to passive ground state initialization through thermalization, with the time constant given by T1= 80μs, the use of the FPGA-based platform allows us to improve both the fidelity and the time of the qubit initialization by an order of magnitude.