In state-of-the-art superconducting quantum processors, each qubit is controlled by at least one control line that delivers control pulses generated at room temperature to qubits atmillikelvin temperatures. This strategy has been successfully applied to control hundreds of qubits but is unlikely to be scalable to control thousands of qubits, let alone millions or even billions of qubits needed in fault-tolerance quantum computing. The reason for this is due to the wiring challenge, the number of accommodated control lines is limited by factors, such as the cooling power and physical space of the cryogenic system, the control footprint area at the qubit chip level, and so on. Here, we introduce a multiplexed control architecture for superconducting qubits with two types of shared control lines, row and column lines, providing an efficient approach for parallel controlling N qubits with O(N‾‾√) control lines. With the combination of the two-type shared lines, unique pairs of control pulses are delivered to qubits on each row-column intersection, enabling parallel qubit addressing. Of particular concern here is that, unlike traditional gate schemes, both single- and two-qubit gates are implemented with pairs of control pulses. Considering the inherent parallelism and the control limitations, the integration of the architecture into quantum computing systems should be tailored as much as possible to the specific properties of the quantum circuits to be executed. As such, the architecture could be scalable for executing structured quantum circuits, such as quantum error correction circuits.
Implementing arbitrary single-qubit gates with near perfect fidelity is among the most fundamental requirements in gate-based quantum information processing. In this work, we fabrica transmon qubit with long coherence times and demonstrate single-qubit gates with the average gate error below 10−4, i.e. (7.42±0.04)×10−5 by randomized benchmarking (RB). To understand the error sources, we experimentally obtain an error budget, consisting of the decoherence errors lower bounded by (4.62±0.04)×10−5 and the leakage rate per gate of (1.16±0.04)×10−5. Moreover, we reconstruct the process matrices for the single-qubit gates by the gate set tomography (GST), with which we simulate RB sequences and obtain single-qubit fedlities consistent with experimental results. We also observe non-Markovian behavior in the experiment of long-sequence GST, which may provide guidance for further calibration. The demonstration extends the upper limit that the average fidelity of single-qubit gates can reach in a transmon-qubit system, and thus can be an essential step towards practical and reliable quantum computation in the near future.
Accurate control of qubits is the central requirement for building functional quantum processors. For the current superconducting quantum processor, high-fidelity control of qubitsis mainly based on independently calibrated microwave pulses, which could differ from each other in frequencies, amplitudes, and phases. With this control strategy, the needed physical source could be challenging, especially when scaling up to large-scale quantum processors is considered. Inspired by Kane’s proposal for spin-based quantum computing, here, we explore theoretically the possibility of baseband flux control of superconducting qubits with only shared and always-on microwave drives. In our strategy, qubits are by default far detuned from the drive during system idle periods, qubit readout and baseband flux-controlled two-qubit gates can thus be realized with minimal impacts from the always-on drive. By contrast, during working periods, qubits are tuned on resonance with the drive and single-qubit gates can be realized. Therefore, universal qubit control can be achieved with only baseband flux pulses and always-on shared microwave drives. We apply this strategy to the qubit architecture where tunable qubits are coupled via a tunable coupler, and the analysis shows that high-fidelity qubit control is possible. Besides, the baseband control strategy needs fewer physical resources, such as control electronics and cooling power in cryogenic systems, than that of microwave control. More importantly, the flexibility of baseband flux control could be employed for addressing the non-uniformity issue of superconducting qubits, potentially allowing the realization of multiplexing and cross-bar technologies and thus controlling large numbers of qubits with fewer control lines. We thus expect that baseband control with shared microwave drives can help build large-scale superconducting quantum processors.
Crosstalk is a major concern in the implementation of large-scale quantum computation since it can degrade the performance of qubit addressing and cause gate errors. Finding the originof crosstalk and separating contributions from different channels are essential prerequisites for figuring out crosstalk mitigation schemes. Here, by performing circuit analysis of two coupled floating transmon qubits, we demonstrate that, even if the stray coupling, e.g., between a qubit and the drive line of its nearby qubit, is absent, microwave crosstalk between qubits can still exist due to the presence of a spurious crosstalk channel. This channel arises from free modes, which are supported by the floating structure of transmon qubits, i.e., the two superconducting islands of the qubits have no galvanic connection to the ground. For various geometric layouts of floating transmon qubits, we give the contributions of microwave crosstalk from the spurious channel and show that this channel can become a performance-limiting factor in qubit addressing. This research could provide guidance for suppressing microwave crosstalk between floating superconducting qubits through the design of qubit circuits.
With the long coherence time, fixed-frequency transmon qubit is a promising qubit modality for quantum computing. Currently, diverse qubit architectures that utilize fixed-frequencytransmon qubits have been demonstrated with high-fidelity gate performance. Nevertheless, the relaxation times of transmon qubits can have large temporal fluctuations, causing instabilities in gate performance. The fluctuations are often believed to be caused by nearly on-resonance couplings with sparse two-level-system (TLS) defects. To mitigate their impact on qubit coherence and gate performance, one direct approach is to tune the qubits away from these TLSs. In this work, to combat the potential TLS-induced performance fluctuations in a tunable-bus architecture unitizing fixed-frequency transmon qubits, we explore the possibility of using an off-resonance microwave drive to effectively tuning the qubit frequency through the ac-Stark shift while implementing universal gate operations on the microwave-dressed qubit. We show that the qubit frequency can be tuned up to 20 MHz through the ac-stark shift while keeping minimal impacts on the qubit control. Besides passive approaches that aim to remove these TLSs through more careful treatments of device fabrications, this work may offer an active approach towards mitigating the TLS-induced performance fluctuations in fixed-frequency transmon qubit devices.
Maintaining or even improving gate performance with growing numbers of parallel controlled qubits is a vital requirement towards fault-tolerant quantum computing. For superconductingquantum processors, though isolated one- or two-qubit gates have been demonstrated with high-fidelity, implementing these gates in parallel commonly show worse performance. Generally, this degradation is attributed to various crosstalks between qubits, such as quantum crosstalk due to residual inter-qubit coupling. An understanding of the exact nature of these crosstalks is critical to figuring out respective mitigation schemes and improved qubit architecture designs with low crosstalk. Here we give a theoretical analysis of quantum crosstalk impact on simultaneous gate operations in a qubit architecture, where fixed-frequency transmon qubits are coupled via a tunable bus, and sub-100-ns controlled-Z (CZ) gates can be realized by applying a baseband flux pulse on the bus. Our analysis shows that for microwave-driven single qubit gates, the dressing from qubit-qubit coupling can cause non-negligible cross-driving errors when qubits operate near frequency collision regions. During CZ gate operations, although unwanted near-neighbor interactions are nominally turned off, sub-MHz parasitic next-near-neighbor interactions involving spectator qubits can still exist, causing considerable leakage or control error when one operates qubit systems around these parasitic resonance points. To ensure high-fidelity simultaneous operations, this could rise a request to figure out a better way to balance the gate error from target qubit systems themselves and the error from non-participating spectator qubits. Overall, our analysis suggests that towards useful quantum processors, the qubit architecture should be examined carefully in the context of high-fidelity simultaneous gate operations in a scalable qubit lattice.
Significant progress has been made in building large-scale superconducting quantum processors based on flip-chip technology. In this work, we use the flip-chip technology to realizea modified transmon qubit, donated as the „flipmon“, whose large shunt capacitor is replaced by a vacuum-gap parallel plate capacitor. To further reduce the qubit footprint, we place one of the qubit pads and a single Josephson junction on the bottom chip and the other pad on the top chip which is galvanically connected with the single Josephson junction through an indium bump. The electric field participation ratio can arrive at nearly 53% in air when the vacuum-gap is about 5 microns, and thus potentially leading to a lower dielectric loss. The coherence times of the flipmons are measured in the range of 30-60 microseconds, which are comparable with that of traditional transmons with similar fabrication processes. The electric field simulation indicates that the metal-air interface’s participation ratio increases significantly and may dominate the qubit’s decoherence. This suggests that more careful surface treatment needs to be considered. No evidence shows that the indium bumps inside the flipmons cause significant decoherence. With well-designed geometry and good surface treatment, the coherence of the flipmons can be further improved.
By using the dry etching process of tantalum (Ta) film, we had obtained transmon qubit with the best lifetime (T1) 503 us, suggesting that the dry etching process can be adopted inthe following multi-qubit fabrication with Ta film. We also compared the relaxation and coherence times of transmons made with different materials (Ta, Nb and Al) with the same design and fabrication processes of Josephson junction, we found that samples prepared with Ta film had the best performance, followed by those with Al film and Nb film. We inferred that the reason for this difference was due to the different loss of oxide materials located at the metal-air interface.
The superconducting transmon qubit is currently a leading qubit modality for quantum computing, but gate performance in quantum processor with transmons is often insufficient to supportrunning complex algorithms for practical applications. It is thus highly desirable to further improve gate performance. Due to the weak anharmonicity of transmon, a static ZZ interaction between coupled transmons commonly exists, undermining the gate performance, and in long term, it can become performance limiting. Here we theoretically explore a previously unexplored parameter region in an all-transmon system to address this issue. We show that an experimentally feasible parameter region, where the ZZ interaction is heavily suppressed while leaving XY interaction with an adequate strength to implement two-qubit gates, can be found in an all-transmon system. Thus, two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction. To illustrate this, we show that an iSWAP gate with fast gate speed and dramatically lower conditional phase error can be achieved. Scaling up to large-scale transmon quantum processor, especially the cases with fixed coupling, addressing error, idling error, and crosstalk that arises from static ZZ interaction could also be heavily suppressed.
For building a scalable quantum processor with superconducting qubits, the ZZ interaction is of great concert because of relevant for implementing two-qubit gates, and the close contactbetween gate infidelity and its residual. Two-qubit gates with fidelity beyond fault-tolerant thresholds have been demonstrated using the ZZ interaction. However, as the performance of quantum processor improves, the residual static-ZZ can also become a performance-limiting factor for quantum gate operations and quantum error correction. Here, we introduce a scalable superconducting architecture for addressing this challenge. We demonstrate that by coupling two superconducting qubits with opposite-sign anharmonicities together, high-contrast ZZ interaction can be realized in this architecture. Thus, we can control ZZ interaction with high on/off ratio for implementing two-qubit CZ gate, or suppress it during the two-qubit gate operations using XY interaction (e.g. iSWAP). Meanwhile, the ZZ crosstalk related to neighboring spectator qubits can also be heavily suppressed in fixed coupled multi-qubit systems. This architecture could provide a promising way towards scalable superconducting quantum processor with high gate fidelity and low qubit crosstalk.