Dispersive readout of superconducting qubits relies on a transverse capacitive coupling that hybridizes the qubit with the readout resonator, subjecting the qubit to Purcell decay andmeasurement-induced state transitions (MIST). Despite the widespread use of Purcell filters to suppress qubit decay and near-quantum-limited amplifiers, dispersive readout often lags behind single- and two-qubit gates in both speed and fidelity. Here, we experimentally demonstrate junction readout, a simple readout architecture that realizes a strong qubit-resonator cross-Kerr interaction without relying on a transverse coupling. This interaction is achieved by coupling a transmon qubit to its readout resonator through both a capacitance and a Josephson junction. By varying the qubit frequency, we show that this hybrid coupling provides intrinsic Purcell protection and enhanced resilience to MIST, enabling readout at high photon numbers. While junction readout is compatible with conventional linear measurement, in this work we exploit the nonlinear coupling to intentionally engineer a large Kerr nonlinearity in the resonator, enabling bifurcation-based readout. Using this approach, we achieve a 99.4 % assignment fidelity with a 68 ns integration time and a 98.4 % QND fidelity without an external Purcell filter or a near-quantum-limited amplifier. These results establish the junction readout architecture with bifurcation-based readout as a scalable and practical alternative to dispersive readout, enabling fast, high-fidelity qubit measurement with reduced hardware overhead.
Niobium nitride (NbN) is a particularly promising material for quantum technology applications, as entails the degree of reproducibility necessary for large-scale of superconductingcircuits. We demonstrate that resonators based on NbN thin films present a one-photon internal quality factor above 105 maintaining a high impedance (larger than 2kΩ), with a footprint of approximately 50×100 μm2 and a self-Kerr nonlinearity of few tenths of Hz. These quality factors, mostly limited by losses induced by the coupling to two-level systems, have been maintained for kinetic inductances ranging from tenths to hundreds of pH/square. We also demonstrate minimal variations in the performance of the resonators during multiple cooldowns over more than nine months. Our work proves the versatility of niobium nitride high-kinetic inductance resonators, opening perspectives towards the fabrication of compact, high-impedance and high-quality multimode circuits, with sizable interactions.
The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matter-like quantum system to coherently transform an individual excitation into a singlephoton within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work we demonstrate strong coupling between the charge degree of freedom in a gate-detuned GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices (SQUIDs). In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238 MHz at a resonator linewidth κ/2π=12 MHz and a DQD charge qubit dephasing rate of γ2/2π=80 MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit based cavity QED for quantum information processing in semiconductor nano-structures.