Electric field control of radiative heat transfer in a superconducting circuit

  1. Olivier Maillet,
  2. Diego A. Subero Rengel,
  3. Joonas T. Peltonen,
  4. Dmitry S. Golubev,
  5. and Jukka P. Pekola
Heat is detrimental for the operation of quantum systems, yet it fundamentally behaves according to quantum mechanics, being phase coherent and universally quantum-limited regardless
of its carriers. Due to their robustness, superconducting circuits integrating dissipative elements are ideal candidates to emulate many-body phenomena in quantum heat transport, hitherto scarcely explored experimentally. However, their ability to tackle the underlying full physical richness is severely hindered by the exclusive use of a magnetic flux as a control parameter and requires complementary approaches. Here, we introduce a dual, magnetic field-free circuit where charge quantization in a superconducting island enables thorough electric field control. We thus tune the thermal conductance, close to its quantum limit, of a single photonic channel between two mesoscopic reservoirs. We observe heat flow oscillations originating from the competition between Cooper-pair tunnelling and Coulomb repulsion in the island, well captured by a simple model. Our results demonstrate that the duality between charge and flux extends to heat transport, with promising applications in thermal management of quantum devices.

A quantum heat switch based on a driven qubit

  1. Cyril Elouard,
  2. George Thomas,
  3. Olivier Maillet,
  4. Jukka P. Pekola,
  5. and Andrew N. Jordan
Heat flow management at the nanoscale is of great importance for emergent quantum technologies. For instance, a thermal sink that can be activated on-demand is a highly desirable tool
that may accommodate the need to evacuate excess heat at chosen times, e.g. to maintain cryogenic temperatures or reset a quantum system to ground, and the possibility of controlled unitary evolution otherwise. Here we propose a design of such heat switch based on a single coherently driven qubit. We show that the heat flow provided by a hot source to the qubit can be switched on and off by varying external parameters, the frequency and the intensity of the driving. The complete suppression of the heat flow is a quantum effect occurring for specific driving parameters that we express and we analyze the role of the coherences in the free qubit energy eigenbasis. We finally study the feasibility of this quantum heat switch in a circuit QED setup involving a charge qubit coupled to thermal resistances. We demonstrate robustness to experimental imperfections such as additional decoherence, paving the road towards experimental verification of this effect.