Distinguishing coherent and thermal photon noise in a circuit QED system

  1. Fei Yan,
  2. Dan Campbell,
  3. Philip Krantz,
  4. Morten Kjaergaard,
  5. David Kim,
  6. Jonilyn L. Yoder,
  7. David Hover,
  8. Adam Sears,
  9. Andrew J. Kerman,
  10. Terry P. Orlando,
  11. Simon Gustavsson,
  12. and William D. Oliver
In the cavity-QED architecture, photon number fluctuations from residual cavity photons cause qubit dephasing due to the AC Stark effect. These unwanted photons originate from a variety
of sources, such as thermal radiation, leftover measurement photons, and crosstalk. Using a capacitively-shunted flux qubit coupled to a transmission line cavity, we demonstrate a method that identifies and distinguishes coherent and thermal photons based on noise-spectral reconstruction from time-domain spin-locking relaxometry. Using these measurements, we attribute the limiting dephasing source in our system to thermal photons, rather than coherent photons. By improving the cryogenic attenuation on lines leading to the cavity, we successfully suppress residual thermal photons and achieve T1-limited spin-echo decay time. The spin-locking noise spectroscopy technique can readily be applied to other qubit modalities for identifying general asymmetric non-classical noise spectra.

Superconducting Gatemon Qubit based on a Proximitized Two-Dimensional Electron Gas

  1. Lucas Casparis,
  2. Malcolm R. Connolly,
  3. Morten Kjaergaard,
  4. Natalie J. Pearson,
  5. Anders Kringhøj,
  6. Thorvald W. Larsen,
  7. Ferdinand Kuemmeth,
  8. Tiantian Wang,
  9. Candice Thomas,
  10. Sergei Gronin,
  11. Geoffrey C. Gardner,
  12. Michael J. Manfra,
  13. Charles M. Marcus,
  14. and Karl D. Petersson
The coherent tunnelling of Cooper pairs across Josephson junctions (JJs) generates a nonlinear inductance that is used extensively in quantum information processors based on superconducting
circuits, from setting qubit transition frequencies and interqubit coupling strengths, to the gain of parametric amplifiers for quantum-limited readout. The inductance is either set by tailoring the metal-oxide dimensions of single JJs, or magnetically tuned by parallelizing multiple JJs in superconducting quantum interference devices (SQUIDs) with local current-biased flux lines. JJs based on superconductor-semiconductor hybrids represent a tantalizing all-electric alternative. The gatemon is a recently developed transmon variant which employs locally gated nanowire (NW) superconductor-semiconductor JJs for qubit control. Here, we go beyond proof-of-concept and demonstrate that semiconducting channels etched from a wafer-scale two-dimensional electron gas (2DEG) are a suitable platform for building a scalable gatemon-based quantum computer. We show 2DEG gatemons meet the requirements by performing voltage-controlled single qubit rotations and two-qubit swap operations. We measure qubit coherence times up to ~2 us, limited by dielectric loss in the 2DEG host substrate.