One of the main limitations in state-of-the art solid-state quantum processors are qubit decoherence and relaxation due to noise in their local environment. For the field to advancetowards full fault-tolerant quantum computing, a better understanding of the underlying microscopic noise sources is therefore needed. Adsorbates on surfaces, impurities at interfaces and material defects have been identified as sources of noise and dissipation in solid-state quantum devices. Here, we use an ultra-high vacuum package to study the impact of vacuum loading, UV-light exposure and ion irradiation treatments on coherence and slow parameter fluctuations of flux tunable superconducting transmon qubits. We analyse the effects of each of these surface treatments by comparing averages over many individual qubits and measurements before and after treatment. The treatments studied do not significantly impact the relaxation rate Γ1 and the echo dephasing rate Γe2, except for Ne ion bombardment which reduces Γ1. In contrast, flux noise parameters are improved by removing magnetic adsorbates from the chip surfaces with UV-light and NH3 treatments. Additionally, we demonstrate that SF6 ion bombardment can be used to adjust qubit frequencies in-situ and post fabrication without affecting qubit coherence at the sweet spot.
In circuit-based quantum computing, the available gate set typically consists of single-qubit gates acting on each individual qubit and at least one entangling gate between pairs ofqubits. In certain physical architectures, however, some qubits may be ‚hidden‘ and lacking direct addressability through dedicated control and readout lines, for instance because of limited on-chip routing capabilities, or because the number of control lines becomes a limiting factor for many-qubit systems. In this case, no single-qubit operations can be applied to the hidden qubits and their state cannot be measured directly. Instead, they may be controlled and read out only via single-qubit operations on connected ‚control‘ qubits and a suitable set of two-qubit gates. We first discuss the impact of such restricted control capabilities on the quantum volume of specific qubit coupling networks. We then experimentally demonstrate full control and measurement capabilities in a superconducting two-qubit device with local single-qubit control and iSWAP and controlled-phase two-qubit interactions enabled by a tunable coupler. We further introduce an iterative tune-up process required to completely characterize the gate set used for quantum process tomography and evaluate the resulting gate fidelities.
The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-nativegate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of 0.9±0.03% and 1.3±0.4% fidelity for the CZ and the iSWAP gate, respectively. We argue that spurious ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonlyemployed to steer chemical reactions. Local control theory provides an algorithm for the monotonic population transfer from a selected initial state to a desired final state of a quantum system through the on-the-fly shaping of an external pulse. The method, which only requires a unique forward time-propagation of the system wavefunction, can serve as starting point for additional refinements that lead to new pulses with improved properties. Among others, we propose an algorithm for the design of pulses that can transfer population in a reversible manner between given initial and final states of coupled fixed-frequency superconducting qubits.