Characterization and tomography of a hidden qubit

  1. M. Pechal,
  2. G. Salis,
  3. M. Ganzhorn,
  4. D. J. Egger,
  5. M. Werninghaus,
  6. and S. Filipp
In circuit-based quantum computing, the available gate set typically consists of single-qubit gates acting on each individual qubit and at least one entangling gate between pairs of
qubits. In certain physical architectures, however, some qubits may be ‚hidden‘ and lacking direct addressability through dedicated control and readout lines, for instance because of limited on-chip routing capabilities, or because the number of control lines becomes a limiting factor for many-qubit systems. In this case, no single-qubit operations can be applied to the hidden qubits and their state cannot be measured directly. Instead, they may be controlled and read out only via single-qubit operations on connected ‚control‘ qubits and a suitable set of two-qubit gates. We first discuss the impact of such restricted control capabilities on the quantum volume of specific qubit coupling networks. We then experimentally demonstrate full control and measurement capabilities in a superconducting two-qubit device with local single-qubit control and iSWAP and controlled-phase two-qubit interactions enabled by a tunable coupler. We further introduce an iterative tune-up process required to completely characterize the gate set used for quantum process tomography and evaluate the resulting gate fidelities.

Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform

  1. M. Ganzhorn,
  2. G. Salis,
  3. D. J. Egger,
  4. A. Fuhrer,
  5. M. Mergenthaler,
  6. C. Müller,
  7. P. Müller,
  8. S. Paredes,
  9. M. Pechal,
  10. M. Werninghaus,
  11. and S. Filipp
The possibility to utilize different types of two-qubit gates on a single quantum computing platform adds flexibility in the decomposition of quantum algorithms. A larger hardware-native
gate set may decrease the number of required gates, provided that all gates are realized with high fidelity. Here, we benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler that mediates the interaction between two superconducting qubits. Using randomized benchmarking protocols we estimate an error per gate of 0.9±0.03% and 1.3±0.4% fidelity for the CZ and the iSWAP gate, respectively. We argue that spurious ZZ-type couplings are the dominant error source for the iSWAP gate, and that phase stability of all microwave drives is of utmost importance. Such differences in the achievable fidelities for different two-qubit gates have to be taken into account when mapping quantum algorithms to real hardware.

Local control theory for superconducting qubits

  1. M. Malis,
  2. P. Kl. Barkoutsos,
  3. M. Ganzhorn,
  4. S. Filipp,
  5. D. J. Egger,
  6. S. Bonella,
  7. and I. Tavernelli
In this work, we develop a method to design control pulses for fixed-frequency superconducting qubits coupled via tunable couplers based on local control theory, an approach commonly
employed to steer chemical reactions. Local control theory provides an algorithm for the monotonic population transfer from a selected initial state to a desired final state of a quantum system through the on-the-fly shaping of an external pulse. The method, which only requires a unique forward time-propagation of the system wavefunction, can serve as starting point for additional refinements that lead to new pulses with improved properties. Among others, we propose an algorithm for the design of pulses that can transfer population in a reversible manner between given initial and final states of coupled fixed-frequency superconducting qubits.