Improved fluxonium readout through dynamic flux pulsing

  1. Taryn V. Stefanski,
  2. Figen Yilmaz,
  3. Eugene Y. Huang,
  4. Martijn F.S. Zwanenburg,
  5. Siddharth Singh,
  6. Siyu Wang,
  7. Lukas J. Splitthoff,
  8. and Christian Kraglund Andersen
The ability to perform rapid, high fidelity readout of a qubit state is an important requirement for quantum algorithms and, in particular, for enabling operations such as mid-circuit
measurements and measurement-based feedback for error correction schemes on large quantum processors. The growing interest in fluxonium qubits, due to their long coherence times and high anharmonicity, merits further attention to reducing the readout duration and measurement errors. We find that this can be accomplished by exploiting the flux tunability of fluxonium qubits. In this work, we experimentally demonstrate flux-pulse-assisted readout, as proposed in Phys. Rev. Applied 22, 014079 (this https URL), in a setup without a quantum-limited parametric amplifier. Increasing the dispersive shift magnitude by almost 20% through flux pulsing, we achieve an assignment fidelity of 94.3% with an integration time of 280 ns. The readout performance is limited by state initialization, but we find that the limit imposed only by the signal-to-noise ratio corresponds to an assignment fidelity of 99.9% with a 360 ns integration time. We also verify these results through simple semi-classical simulations. These results constitute the fastest reported readout of a fluxonium qubit, with the prospect of further improvement by incorporation of a parametric amplifier in the readout chain to enhance measurement efficiency.

Direct manipulation of a superconducting spin qubit strongly coupled to a transmon qubit

  1. Marta Pita-Vidal,
  2. Arno Bargerbos,
  3. Rok Žitko,
  4. Lukas J. Splitthoff,
  5. Lukas Grünhaupt,
  6. Jaap J. Wesdorp,
  7. Yu Liu,
  8. Leo P. Kouwenhoven,
  9. Ramón Aguado,
  10. Bernard van Heck,
  11. Angela Kou,
  12. and Christian Kraglund Andersen
Spin qubits in semiconductors are currently one of the most promising architectures for quantum computing. However, they face challenges in realizing multi-qubit interactions over extended
distances. Superconducting spin qubits provide a promising alternative by encoding a qubit in the spin degree of freedom of an Andreev level. Such an Andreev spin qubit could leverage the advantages of circuit quantum electrodynamic, enabled by an intrinsic spin-supercurrent coupling. The first realization of an Andreev spin qubit encoded the qubit in the excited states of a semiconducting weak-link, leading to frequent decay out of the computational subspace. Additionally, rapid qubit manipulation was hindered by the need for indirect Raman transitions. Here, we exploit a different qubit subspace, using the spin-split doublet ground state of an electrostatically-defined quantum dot Josephson junction with large charging energy. Additionally, we use a magnetic field to enable direct spin manipulation over a frequency range of 10 GHz. Using an all-electric microwave drive we achieve Rabi frequencies exceeding 200 MHz. We furthermore embed the Andreev spin qubit in a superconducting transmon qubit, demonstrating strong coherent qubit-qubit coupling. These results are a crucial step towards a hybrid architecture that combines the beneficial aspects of both superconducting and semiconductor qubits.

Singlet-doublet transitions of a quantum dot Josephson junction detected in a transmon circuit

  1. Arno Bargerbos,
  2. Marta Pita-Vidal,
  3. Rok Žitko,
  4. Jesús Ávila,
  5. Lukas J. Splitthoff,
  6. Lukas Grünhaupt,
  7. Jaap J. Wesdorp,
  8. Christian K. Andersen,
  9. Yu Liu,
  10. Leo P. Kouwenhoven,
  11. Ramón Aguado,
  12. Angela Kou,
  13. and Bernard van Heck
We realize a hybrid superconductor-semiconductor transmon device in which the Josephson effect is controlled by a gate-defined quantum dot in an InAs/Al nanowire. Microwave spectroscopy
of the transmon’s transition spectrum allows us to probe the ground state parity of the quantum dot as a function of gate voltages, external magnetic flux, and magnetic field applied parallel to the nanowire. The measured parity phase diagram is in agreement with that predicted by a single-impurity Anderson model with superconducting leads. Through continuous time monitoring of the circuit we furthermore resolve the quasiparticle dynamics of the quantum dot Josephson junction across the phase boundaries. Our results can facilitate the realization of semiconductor-based 0−π qubits and Andreev qubits.