Microwave-activated gates between a fluxonium and a transmon qubit

  1. Alessandro Ciani,
  2. Boris M. Varbanov,
  3. Nicolas Jolly,
  4. Christian K. Andersen,
  5. and Barbara M. Terhal
We propose and analyze two types of microwave-activated gates between a fluxonium and a transmon qubit, namely a cross-resonance (CR) and a CPHASE gate. The large frequency difference
between a transmon and a fluxonium makes the realization of a two-qubit gate challenging. For a medium-frequency fluxonium qubit, the transmon-fluxonium system allows for a cross-resonance effect mediated by the higher levels of the fluxonium over a wide range of transmon frequencies. This allows one to realize the cross-resonance gate by driving the fluxonium at the transmon frequency, mitigating typical problems of the cross-resonance gate in transmon-transmon chips related to frequency targeting and residual ZZ coupling. However, when the fundamental frequency of the fluxonium enters the low-frequency regime below 100 MHz, the cross-resonance effect decreases leading to long gate times. For this range of parameters, a fast microwave CPHASE gate can be implemented using the higher levels of the fluxonium. In both cases, we perform numerical simulations of the gate showing that a gate fidelity above 99% can be obtained with gate times between 100 and 300 ns. Next to a detailed gate analysis, we perform a study of chip yield for a surface code lattice of fluxonia and transmons interacting via the proposed cross-resonance gate. We find a much better yield as compared to a transmon-only architecture with the cross-resonance gate as native two-qubit gate.

Singlet-doublet transitions of a quantum dot Josephson junction detected in a transmon circuit

  1. Arno Bargerbos,
  2. Marta Pita-Vidal,
  3. Rok Žitko,
  4. Jesús Ávila,
  5. Lukas J. Splitthoff,
  6. Lukas Grünhaupt,
  7. Jaap J. Wesdorp,
  8. Christian K. Andersen,
  9. Yu Liu,
  10. Leo P. Kouwenhoven,
  11. Ramón Aguado,
  12. Angela Kou,
  13. and Bernard van Heck
We realize a hybrid superconductor-semiconductor transmon device in which the Josephson effect is controlled by a gate-defined quantum dot in an InAs/Al nanowire. Microwave spectroscopy
of the transmon’s transition spectrum allows us to probe the ground state parity of the quantum dot as a function of gate voltages, external magnetic flux, and magnetic field applied parallel to the nanowire. The measured parity phase diagram is in agreement with that predicted by a single-impurity Anderson model with superconducting leads. Through continuous time monitoring of the circuit we furthermore resolve the quasiparticle dynamics of the quantum dot Josephson junction across the phase boundaries. Our results can facilitate the realization of semiconductor-based 0−π qubits and Andreev qubits.