A bismuth-doped silicon substrate was analyzed by using a magnetometer based on a superconducting flux qubit. The temperature dependence of the magnetization indicates that the siliconsubstrate contains at least two signal sources, intentionally doped bismuth spins and a spin 1/2 system with a ratio of 0.873 to 0.127. In combination with a conventional electron spin resonance spectrometer, a candidate origin of the spin 1/2 system was identified as a dangling bond on the silicon surface. In addition, the spin sensitivity of the magnetometer was also estimated to be 12 spins/Hz‾‾‾√ by using optimized dispersive readout.
We report experimental and theoretical results on the extremely large Lamb shift in a multimode circuit quantum electrodynamics (QED) system in the deep-strong coupling (DSC) regime,where the qubit-resonator coupling strength is comparable to or larger than the qubit and resonator frequencies. The system comprises a superconducting flux qubit (FQ) and a quarter-wavelength coplanar waveguide resonator (λ/4 CPWR) that are coupled inductively through a shared edge that contains a Josephson junction to achieve the DSC regime. Spectroscopy is performed around the frequency of the fundamental mode of the CPWR, and the spectrum is fitted by the single-mode quantum Rabi Hamiltonian to obtain the system parameters. Since the qubit is also coupled to a large number of higher modes in the resonator, the single-mode fitting does not provide the bare qubit energy but a value that incorporates the renormalization from all the other modes. We derive theoretical formulas for the Lamb shift in the multimode resonator system. As shown in previous studies, there is a cut-off frequency ωcutoff for the coupling between the FQ and the modes in the CPWR, where the coupling grows as ωn‾‾‾√ for ωn/ωcutoff≪1 and decreases as 1/ωn‾‾‾√ for ωn/ωcutoff≫1. Here ωn is the frequency of the nth mode. Using our observed spectrum and theoretical formulas, we estimate that the Lamb shift from the fundamental mode is 82.3\% and the total Lamb shift from all the modes is 96.5\%. This result illustrates that the coupling to the large number of modes in a CPWR yields an extremely large Lamb shift but does not suppress the qubit energy to zero, which would happen in the absence of a high-frequency cut-off.
We demonstrate magnetometry of cultured neurons on a polymeric film using a superconducting flux qubit that works as a sensitive magnetometer in a microscale area. The neurons are culturedin Fe3+ rich medium to increase magnetization signal generated by the electron spins originating from the ions. The magnetometry is performed by insulating the qubit device from the laden neurons with the polymeric film while keeping the distance between them around several micrometers. By changing temperature (12.5 – 200 mK) and a magnetic field (2.5 – 12.5 mT), we observe a clear magnetization signal from the neurons that is well above the control magnetometry of the polymeric film itself. From electron spin resonance (ESR) spectrum measured at 10 K, the magnetization signal is identified to originate from electron spins of iron ions in neurons. This technique to detect a bio-spin system can be extended to achieve ESR spectroscopy at the single-cell level, which will give the spectroscopic fingerprint of cells.
Parasitic two-level-system (TLS) defects are one of the major factors limiting the coherence times of superconducting qubits. Although there has been significant progress in characterizingbasic parameters of TLS defects, exact mechanisms of interactions between a qubit and various types of TLS defects remained largely unexplored due to the lack of experimental techniques able to probe the form of qubit-defect couplings. Here we present an experimental method of TLS defect spectroscopy using a strong qubit drive that allowed us to distinguish between various types of qubit-defect interactions. By applying this method to a capacitively shunted flux qubit, we detected a rare type of TLS defects with a nonlinear qubit-defect coupling due to critical-current fluctuations, as well as conventional TLS defects with a linear coupling to the qubit caused by charge fluctuations. The presented approach could become the routine method for high-frequency defect inspection and quality control in superconducting qubit fabrication, providing essential feedback for fabrication process optimization. The reported method is a powerful tool to uniquely identify the type of noise fluctuations caused by TLS defects, enabling the development of realistic noise models relevant to fault-tolerant quantum control.
We control transition frequency of a superconducting flux qubit coupled to a frequency-tunable resonator comprising a direct current superconducting quantum interference device (dc-SQUID)by microwave driving. The dc-SQUID mediates the coupling between microwave photons in the resonator and a flux qubit. The polarity of the frequency shift depends on the sign of the flux bias for the qubit and can be both positive and negative. The absolute value of the frequency shift becomes larger by increasing the photon number in the resonator. These behaviors are reproduced by a model considering the magnetic interaction between the flux qubit and dc-SQUID. The tuning range of the transition frequency of the flux qubit reaches ≈ 1.9 GHz, which is much larger than the ac Stark/Lamb shift observed in the dispersive regime using typical circuit quantum electrodynamics devices.
We report on electron spin resonance spectroscopy measurements using a superconducting flux qubit with a sensing volume of 6 fl. The qubit is read out using a frequency-tunable Josephsonbifurcation amplifier, which leads to an inferred measurement sensitivity of about 20 spins in a 1 s measurement. This sensitivity represents an order of magnitude improvement when compared with flux-qubit schemes using a dc-SQUID switching readout. Furthermore, noise spectroscopy reveals that the sensitivity is limited by flicker (1/f) flux noise.
We theoretically analyze the performance of the nuclear magnetic resonance (NMR) spectroscopy with a superconducting flux qubit (FQ). Such NMR with the FQ is attractive because of thepossibility to detect the relatively small number of nuclear spins in a local region (∼μm) with low temperatures (∼ mK) and low magnetic fields (∼ mT), in which other types of quantum sensing schemes cannot easily access. A sample containing nuclear spins is directly attached on the FQ, and the FQ is used as a magnetometer to detect magnetic fields from the nuclear spins. Especially, we consider two types of approaches to NMR with the FQ. One of them is to use spatially inhomogeneous excitations of the nuclear spins, which are induced by a spatially asymmetric driving with radio frequency~(RF) pulses. Such an inhomogeneity causes a change in the DC magnetic flux penetrating a loop of the FQ, which can be detected by a standard Ramsey measurement on the FQ. The other approach is to use a dynamical decoupling on the FQ to measure AC magnetic fields induced by Larmor precession of the nuclear spins. In this case, neither a spin excitation nor a spin polarization is required since the signal comes from fluctuating magnetic fields of the nuclear spins. We calculate the minimum detectable density (number) of the nuclear spins for the FQ with experimentally feasible parameters. We show that the minimum detectable density (number) of the nuclear spins with these approaches is around 1021 /cm3 (108) with an accumulation time of a second.
We report on experimentally measured light shifts of superconducting flux qubits deep-strongly-coupled to an LC oscillator, where the coupling constant is comparable to the qubit’stransition frequency and the oscillator’s resonance frequency. By using two-tone spectroscopy, the energies of the six-lowest levels of the coupled circuits are determined. We find a huge Lamb shift that exceeds 90% of the bare qubit frequencies and inversion of the qubits‘ ground and excited states when there is a finite number of photons in the oscillator. Our experimental results agree with theoretical predictions based on the quantum Rabi model.
Electron paramagnetic resonance (EPR) spectroscopy is an important technology in physics, chemistry, materials science, and biology. Sensitive detection with a small sample volume isa key objective in these areas, because it is crucial, for example, for the readout of a highly packed spin based quantum memory or the detection of unlabeled metalloproteins in a single cell. In conventional EPR spectrometers, the energy transfer from the spins to the cavity at a Purcell enhanced rate plays an essential role and requires the spins to be resonant with the cavity, however the size of the cavity (limited by the wavelength) makes it difficult to improve the spatial resolution. Here, we demonstrate a novel EPR spectrometer using a single artificial atom as a sensitive detector of spin magnetization. The artificial atom, a superconducting flux qubit, provides advantages both in terms of its quantum properties and its much stronger coupling with magnetic fields. We have achieved a sensitivity of ∼400 spins/Hz‾‾‾√ with a magnetic sensing volume around 10−14λ3 (50 femto-liters). This corresponds to an improvement of two-order of magnitude in the magnetic sensing volume compared with the best cavity based spectrometers while maintaining a similar sensitivity as those spectrometers . Our artificial atom is suitable for scaling down and thus paves the way for measuring single spins on the nanometer scale.
We report on spectra of circuit quantum electrodynamics (QED) systems in an intermediate regime that lies between the ultrastrong and deep strong coupling regimes, which have been reportedpreviously in the literature. Our experimental results, along with numerical simulations, demonstrate that as the coupling strength increases, the spectrum of a circuit-QED system undergoes multiple qualitative transformations, such that several ranges are identified, each with its own unique spectral features. These results allow us to define characteristic features that distinguish several different regimes of coupling in circuit-QED systems.