Contemporary quantum computers encode and process quantum information in binary qubits (d = 2). However, many architectures include higher energy levels that are left as unused computationalresources. We demonstrate a superconducting ququart (d = 4) processor and combine quantum optimal control with efficient gate decompositions to implement high-fidelity ququart gates. We distinguish between viewing the ququart as a generalized four-level qubit and an encoded pair of qubits, and characterize the resulting gates in each case. In randomized benchmarking experiments we observe gate fidelities greater 95% and identify coherence as the primary limiting factor. Our results validate ququarts as a viable tool for quantum information processing.
Fixed-frequency transmon quantum computers (QCs) have advanced in coherence times, addressability, and gate fidelities. Unfortunately, these devices are restricted by the number ofon-chip qubits, capping processing power and slowing progress toward fault-tolerance. Although emerging transmon devices feature over 100 qubits, building QCs large enough for meaningful demonstrations of quantum advantage requires overcoming many design challenges. For example, today’s transmon qubits suffer from significant variation due to limited precision in fabrication. As a result, barring significant improvements in current fabrication techniques, scaling QCs by building ever larger individual chips with more qubits is hampered by device variation. Severe device variation that degrades QC performance is referred to as a defect. Here, we focus on a specific defect known as a frequency collision.
When transmon frequencies collide, their difference falls within a range that limits two-qubit gate fidelity. Frequency collisions occur with greater probability on larger QCs, causing collision-free yields to decline as the number of on-chip qubits increases. As a solution, we propose exploiting the higher yields associated with smaller QCs by integrating quantum chiplets within quantum multi-chip modules (MCMs). Yield, gate performance, and application-based analysis show the feasibility of QC scaling through modularity.