The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scalequantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error which has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors, and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally-measured error rates. Our results demonstrate that randomized compiling can be utilized to maximally-leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.
Detecting traveling photons is an essential primitive for many quantum information processing tasks. We introduce a single-photon detector design operating in the microwave domain,based on a weakly nonlinear metamaterial where the nonlinearity is provided by a large number of Josephson junctions. The combination of weak nonlinearity and large spatial extent circumvents well-known obstacles limiting approaches based on a localized Kerr medium. Using numerical many-body simulations we show that the single-photon detection fidelity increases with the length of the metamaterial to approach one at experimentally realistic lengths. A remarkable feature of the detector is that the metamaterial approach allows for a large detection bandwidth. In stark contrast to conventional photon detectors operating in the optical domain, the photon is not destroyed by the detection and the photon wavepacket is minimally disturbed. The detector design we introduce offers new possibilities for quantum information processing, quantum optics and metrology in the microwave frequency domain.
We present a systematic study of the effects of shielding on the internal quality factors (Qi) of Al and TiN microwave resonators designed for use in quantum coherent circuits. Measurementswere performed in an adiabatic demagnetization refrigerator, where typical magnetic fields of 200 {\mu}T are present at the unshielded sample stage. Radiation shielding consisted of 100 mK and 500 mK Cu cans coated with infrared absorbing epoxy. Magnetic shields consisted of Cryoperm 10 and Sn plating of the Cu cans. A 2.7 K radiation can and coaxial thermalization filters were present in all measurements. TiN samples with Qi = 1.3∗106 at 100 mK exhibited no significant variation in quality factor when tested with limited shielding. In contrast, Al resonators showed improved Qi with successive shielding, with the largest gains obtained from the addition of the first radiation and magnetic shields and saturating before the addition of Sn plating infrared absorbing epoxy.