Scalable Fluxonium-Transmon Architecture for Error Corrected Quantum Processors

  1. Lukas Heunisch,
  2. Longxiang Huang,
  3. Stephan Tasler,
  4. Johannes Schirk,
  5. Florian Wallner,
  6. Verena Feulner,
  7. Bijita Sarma,
  8. Klaus Liegener,
  9. Christian M. F. Schneider,
  10. Stefan Filipp,
  11. and Michael J. Hartmann
We propose a hybrid quantum computing architecture composed of alternating fluxonium and transmon qubits, that are coupled via transmon tunable couplers. We show that this system offers
excellent scaling properties, characterized by engineered zero ZZ-crosstalk in the idle regime, a substantial reduction of level-crowding challenges through the alternating arrangement of different qubit types within the lattice, and parameter regimes that circumvent the capacitive loading problem commonly associated with fluxoniums. In numerical simulations, we show a parametrically driven CZ-gate that achieves a closed-system infidelity that is orders of magnitude below the coherence limit for gate durations ≳30ns using a two-tone flux pulse on the tunable coupler. Furthermore, we show that this gate scheme retains its fidelity in the presence of spectator qubits, making it a scalable solution for large lattices. Moreover, for the implementation of error correcting codes, our approach can leverage the long coherence times and large non-linearities of fluxoniums as data qubits, while fixed-frequency transmons with established readout techniques can serve as measurement ancillas.

Protected Fluxonium Control with Sub-harmonic Parametric Driving

  1. Johannes Schirk,
  2. Florian Wallner,
  3. Longxiang Huang,
  4. Ivan Tsitsilin,
  5. Niklas Bruckmoser,
  6. Leon Koch,
  7. David Bunch,
  8. Niklas J. Glaser,
  9. Gerhard B. P. Huber,
  10. Martin Knudsen,
  11. Gleb Krylov,
  12. Achim Marx,
  13. Frederik Pfeiffer,
  14. Lea Richard,
  15. Federico A. Roy,
  16. João H. Romeiro,
  17. Malay Singh,
  18. Lasse Södergren,
  19. Etienne Dionis,
  20. Dominique Sugny,
  21. Max Werninghaus,
  22. Klaus Liegener,
  23. Christian M. F. Schneider,
  24. and Stefan Filipp
Protecting qubits from environmental noise while maintaining strong coupling for fast high-fidelity control is a central challenge for quantum information processing. Here, we demonstrate
a novel control scheme for superconducting fluxonium qubits that eliminates qubit decay through the control channel by reducing the environmental density of states at the transition frequency. Adding a low-pass filter on the flux line allows for flux-biasing and at the same time coherently controlling the fluxonium qubit by parametrically driving it at integer fractions of its transition frequency. We compare the filtered to the unfiltered configuration and find a five times longer T1, and ten times improved T2-echo time in the protected case. We demonstrate coherent control with up to 11-photon sub-harmonic drives, highlighting the strong non-linearity of the fluxonium potential. We experimentally determine Rabi frequencies and drive-induced frequency shifts in excellent agreement with numerical and analytical calculations. Furthermore, we show the equivalence of a 3-photon sub-harmonic drive to an on-resonance drive by benchmarking sub-harmonic gate fidelities above 99.94 %. These results open up a scalable path for full qubit control via a single protected channel, strongly suppressing qubit decoherence caused by control lines.

Parity-dependent state transfer for direct entanglement generation

  1. Federico A. Roy,
  2. João H. Romeiro,
  3. Leon Koch,
  4. Ivan Tsitsilin,
  5. Johannes Schirk,
  6. Niklas J. Glaser,
  7. Niklas Bruckmoser,
  8. Malay Singh,
  9. Franz X. Haslbeck,
  10. Gerhard B. P. Huber,
  11. Gleb Krylov,
  12. Achim Marx,
  13. Frederik Pfeiffer,
  14. Christian M. F. Schneider,
  15. Christian Schweizer,
  16. Florian Wallner,
  17. David Bunch,
  18. Lea Richard,
  19. Lasse Södergren,
  20. Klaus Liegener,
  21. Max Werninghaus,
  22. and Stefan Filipp
As quantum information technologies advance they face challenges in scaling and connectivity. In particular, two necessities remain independent of the technological implementation:
the need for connectivity between distant qubits and the need for efficient generation of entanglement. Perfect State Transfer is a technique which realises the time optimal transfer of a quantum state between distant nodes of qubit lattices with only nearest-neighbour couplings, hence providing an important tool to improve device connectivity. Crucially, the transfer protocol results in effective parity-dependent non-local interactions, extending its utility to the efficient generation of entangled states. Here, we experimentally demonstrate Perfect State Transfer and the generation of multi-qubit entanglement on a chain of superconducting qubits. The system consists of six fixed-frequency transmon qubits connected by tunable couplers, where the couplings are controlled via parametric drives. By simultaneously activating all couplings and engineering their individual amplitudes and frequencies, we implement Perfect State Transfer on up to six qubits and observe the respective single-excitation dynamics for different initial states. We then apply the protocol in the presence of multiple excitations and verify its parity-dependent property, where the number of excitations within the chain controls the phase of the transferred state. Finally, we utilise this property to prepare a multi-qubit Greenberger-Horne-Zeilinger state using only a single transfer operation, demonstrating its application for efficient entanglement generation.

Efficient decoupling of a non-linear qubit mode from its environment

  1. Frederik Pfeiffer,
  2. Max Werninghaus,
  3. Christian Schweizer,
  4. Niklas Bruckmoser,
  5. Leon Koch,
  6. Niklas J. Glaser,
  7. Gerhard Huber,
  8. David Bunch,
  9. Franz X. Haslbeck,
  10. M. Knudsen,
  11. Gleb Krylov,
  12. Klaus Liegener,
  13. Achim Marx,
  14. Lea Richard,
  15. João H. Romeiro,
  16. Federico Roy,
  17. Johannes Schirk,
  18. Christian Schneider,
  19. Malay Singh,
  20. Lasse Södergren,
  21. Ivan Tsitsilin,
  22. Florian Wallner,
  23. Carlos A. Riofrío,
  24. and Stefan Filipp
To control and measure the state of a quantum system it must necessarily be coupled to external degrees of freedom. This inevitably leads to spontaneous emission via the Purcell effect,
photon-induced dephasing from measurement back-action, and errors caused by unwanted interactions with nearby quantum systems. To tackle this fundamental challenge, we make use of the design flexibility of superconducting quantum circuits to form a multi-mode element — an artificial molecule — with symmetry-protected modes. The proposed circuit consists of three superconducting islands coupled to a central island via Josephson junctions. It exhibits two essential non-linear modes, one of which is flux-insensitive and used as the protected qubit mode. The second mode is flux-tunable and serves via a cross-Kerr type coupling as a mediator to control the dispersive coupling of the qubit mode to the readout resonator. We demonstrate the Purcell protection of the qubit mode by measuring relaxation times that are independent of the mediated dispersive coupling. We show that the coherence of the qubit is not limited by photon-induced dephasing when detuning the mediator mode from the readout resonator and thereby reducing the dispersive coupling. The resulting highly protected qubit with tunable interactions may serve as a basic building block of a scalable quantum processor architecture, in which qubit decoherence is strongly suppressed.