Efficient qubit reset and leakage reduction are essential for scalable superconducting quantum computing, particularly in the context of quantum error correction. However, such operationsoften require additional on-chip components. Here, we propose and experimentally demonstrate a mode-efficient approach to qubit reset and readout using a multi-mode Purcell filter in a superconducting quantum circuit. We exploit the inherent multi-mode structure of a coplanar waveguide resonator, using its fundamental and second-order modes for qubit reset and readout, respectively, thereby avoiding additional circuit elements. Implemented in a flip-chip architecture, our device achieves unconditional reset with residual excitation below 1% in 220 ns, and a leakage reduction unit that selectively resets the second excited state within 62 ns. Simulations predict Purcell-limited relaxation times exceeding 1 ms over an 800 MHz bandwidth. To our knowledge, this is the first experimental trial that exploits different-order modes of a microwave resonator for distinct qubit operations, representing a new direction toward scalable, mode-efficient quantum processor design.
Quantum simulation has emerged as a powerful framework for investigating complex many – body phenomena. A key requirement for emulating these dynamics is the realization of fullycontrollable quantum systems enabling various spin interactions. Yet, quantum simulators remain constrained in the types of attainable interactions. Here we demonstrate experimental realization of multiple microwave – engineered spin interactions in superconducting quantum circuits. By precisely controlling the native XY interaction and microwave drives, we achieve tunable spin Hamiltonians including: (i) XYZ spin models with continuously adjustable parameters, (ii) transverse – field Ising systems, and (iii) Dzyaloshinskii – Moriya interacting systems. Our work expands the toolbox for analogue – digital quantum simulation, enabling exploration of a wide range of exotic quantum spin models.
Quantum batteries, as miniature energy storage devices, have sparked significant research interest in recent years. However, achieving rapid and stable energy transfer in quantum batterieswhile obeying quantum speed limits remains a critical challenge. In this work, we experimentally optimize the charging process by leveraging the unique energy level structure of a superconducting capacitively-shunted flux qubit, using counterdiabatic pulses in the stimulated Raman adiabatic passage. Compared to previous studies, we impose two different norm constraints on the driving Hamiltonian, achieving optimal charging without exceeding the overall driving strength. Furthermore, we experimentally demonstrate a charging process that achieves the quantum speed limit. In addition, we introduce a dimensionless parameter to unify charging speed and stability, offering a universal metric for performance optimization. In contrast to metrics such as charging power and thermodynamic efficiency, the criterion quantitatively captures the stability of ergentropy while also considering the charging speed. Our results highlight the potential of the capacitively-shunted qubit platform as an ideal candidate for realizing three-level quantum batteries and deliver novel strategies for optimizing energy transfer protocols.