Parametric coupling is a powerful technique for generating tunable interactions between superconducting circuits using only microwave tones. Here, we present a highly flexible parametriccoupling scheme demonstrated with two transmon qubits, which can be employed for multiple purposes, including the removal of residual ZZ coupling and the implementation of driven swap or swap-free controlled-Z (cZ) gates. Our fully integrated coupler design is only weakly flux tunable, cancels static linear coupling between the qubits, avoids internal coupler dynamics or excitations, and operates with rf-pulses. We show that residual ZZ coupling can be reduced with a parametric dispersive tone down to an experimental uncertainty of 5.5 kHz. Additionally, randomized benchmarking reveals that the parametric swap cZ gate achieves a fidelity of 99.4% in a gate duration of 60 ns, while the dispersive parametric swap-free cZ gate attains a fidelity of 99.5% in only 30 ns. We believe this is the fastest and highest fidelity gate achieved with on-chip parametric coupling to date. We further explore the dependence of gate fidelity on gate duration for both p-swap and p-swap-free cZ gates, providing insights into the possible error sources for these gates. Overall, our findings demonstrate a versatility, precision, speed, and high performance not seen in previous parametric approaches. Finally, our design opens up new possibilities for creating larger, modular systems of superconducting qubits.
Most microwave readout architectures in quantum computing or sensing rely on a semiconductor amplifier at 4 K, typically a high-electron mobility transistor (HEMT). Despite its remarkablenoise performance, a conventional HEMT dissipates several milliwatts of power, posing a practical challenge to scale up the number of qubits or sensors addressed in these architectures. As an alternative, we present an amplification chain consisting of a kinetic-inductance traveling-wave parametric amplifier (KI-TWPA) placed at 4 K, followed by a HEMT placed at 70 K, and demonstrate a chain-added noise TΣ=6.3±0.5 K between 3.5 and 5.5 GHz. While, in principle, any parametric amplifier can be quantum limited even at 4 K, in practice we find the KI-TWPA’s performance limited by the temperature of its inputs, and by an excess of noise Tex=1.9 K. The dissipation of the KI-TWPA’s rf pump constitutes the main power load at 4 K and is about one percent that of a HEMT. These combined noise and power dissipation values pave the way for the KI-TWPA’s use as a replacement for semiconductor amplifiers.
Cavity quantum electrodynamics (QED) with in-situ tunable interactions is important for developing novel systems for quantum simulation and computing. The ability to tune the dispersiveshifts of a cavity QED system provides more functionality for performing either quantum measurements or logical manipulations. Here, we couple two transmon qubits to a lumped-element cavity through a shared dc-SQUID. Our design balances the mutual capacitive and inductive circuit components so that both qubits are highly decoupled from the cavity, offering protection from decoherence processes. We show that by parametrically driving the SQUID with an oscillating flux it is possible to independently tune the interactions between either of the qubits and the cavity dynamically. The strength and detuning of this cavity QED interaction can be fully controlled through the choice of the parametric pump frequency and amplitude. As a practical demonstration, we perform pulsed parametric dispersive readout of both qubits while statically decoupled from the cavity. The dispersive frequency shifts of the cavity mode follow the expected magnitude and sign based on simple theory that is supported by a more thorough theoretical investigation. This parametric approach creates a new tunable cavity QED framework for developing quantum information systems with various future applications, such as entanglement and error correction via multi-qubit parity readout, state and entanglement stabilization, and parametric logical gates.
The act of observing a quantum object fundamentally perturbs its state, resulting in a random walk toward an eigenstate of the measurement operator. Ideally, the measurement is responsiblefor all dephasing of the quantum state. In practice, imperfections in the measurement apparatus limit or corrupt the flow of information required for quantum feedback protocols, an effect quantified by the measurement efficiency. Here we demonstrate the efficient measurement of a superconducting qubit using a nonreciprocal parametric amplifier to directly monitor the microwave field of a readout cavity. By mitigating the losses between the cavity and the amplifier we achieve a measurement efficiency of 72%. The directionality of the amplifier protects the readout cavity and qubit from excess backaction caused by amplified vacuum fluctuations. In addition to providing tools for further improving the fidelity of strong projective measurement, this work creates a testbed for the experimental study of ideal weak measurements, and it opens the way towards quantum feedback protocols based on weak measurement such as state stabilization or error correction.
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits). In superconducting quantum processors, each qubitis individually addressed with microwave signal lines that connect room temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the possible size of a processor to a few thousand qubits. Here we introduce a photonic link employing an optical fiber to guide modulated laser light from room temperature to a cryogenic photodetector, capable of delivering shot-noise limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing. Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fiber enables efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
We present a theoretical model and experimental characterization of a microwave kinetic inductance traveling-wave amplifier (KIT), whose noise performance, measured by a shot noisethermometer, approaches the quantum limit. Biased with a dc current, the KIT operates in a three-wave mixing fashion, thereby reducing by several orders of magnitude the power of the microwave pump tone compared to conventional four-wave mixing KIT devices. It is built in an artificial transmission line intrinsically matched to 50 Ohms, whose dispersion allows for a controlled amplification bandwidth. We experimentally measure 17.6+1.1−1.4 dB of gain across a 2 GHz bandwidth, with an input 1 dB compression power of -63 dBm within that bandwidth, in qualitative agreement with theory. Using the KIT as the first amplifier in an amplification chain, we measure a system-added noise of 0.61±0.08 K between 3.5 and 5.5 GHz, about one eighth the noise obtained when using only a representative classical amplifier. The KIT contribution to this added noise is estimated to be 0.2±0.1 K, consistent with the quantum limit on amplifier added noise. This device is therefore suitable to read large arrays of microwave kinetic inductance detectors or thousands of superconducting qubits.
The measurement of a quantum system is often performed by encoding its state in a single observable of a light field. The measurement efficiency of this observable can be reduced byloss or excess noise on the way to the detector. Even a \textit{quantum-limited} detector that simultaneously measures a second non-commuting observable would double the output noise, therefore limiting the efficiency to 50%. At microwave frequencies, an ideal measurement efficiency can be achieved by noiselessly amplifying the information-carrying quadrature of the light field, but this has remained an experimental challenge. Indeed, while state-of-the-art Josephson-junction based parametric amplifiers can perform an ideal single-quadrature measurement, they require lossy ferrite circulators in the signal path, drastically decreasing the overall efficiency. In this paper, we present a nonreciprocal parametric amplifier that combines single-quadrature measurement and directionality without the use of strong external magnetic fields. We extract a measurement efficiency of 62+17−9% that exceeds the quantum limit and that is not limited by fundamental factors. The amplifier can be readily integrated with superconducting devices, creating a path for ideal measurements of quantum bits and mechanical oscillators.
We introduce a novel near-quantum-limited amplifier with a large tunable bandwidth and high dynamic range – the Josephson Array Mode Parametric Amplifier (JAMPA). The signal andidler modes involved in the amplification process are realized by the array modes of a chain of 1000 flux tunable, Josephson-junction-based, nonlinear elements. The frequency spacing between array modes is comparable to the flux tunability of the modes, ensuring that any desired frequency can be occupied by a resonant mode, which can further be pumped to produce high gain. We experimentally demonstrate that the device can be operated as a nearly quantum-limited parametric amplifier with 20 dB of gain at almost any frequency within (4-12) GHz band. On average, it has a 3 dB bandwidth of 11 MHz and input 1 dB compression power of -108 dBm, which can go as high as -93 dBm. We envision the application of such a device to the time- and frequency-multiplexed readout of multiple qubits, as well as to the generation of continuous-variable cluster states.
We present a new optomechanical device where the motion of a micromechanical membrane couples to a microwave resonance of a three-dimensional superconducting cavity. With this architecture,we realize ultrastrong parametric coupling, where the coupling rate not only exceeds the dissipation rates in the system but also rivals the mechanical frequency itself. In this regime, the optomechanical interaction induces a frequency splitting between the hybridized normal modes that reaches 88% of the bare mechanical frequency, limited by the fundamental parametric instability. The coupling also exceeds the mechanical thermal decoherence rate, enabling new applications in ultrafast quantum state transfer and entanglement generation.
The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from largereverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.