Preserving phase coherence and linearity in cat qubits with exponential bit-flip suppression

  1. Harald Putterman,
  2. Kyungjoo Noh,
  3. Rishi N. Patel,
  4. Gregory A. Peairs,
  5. Gregory S. MacCabe,
  6. Menyoung Lee,
  7. Shahriar Aghaeimeibodi,
  8. Connor T. Hann,
  9. Ignace Jarrige,
  10. Guillaume Marcaud,
  11. Yuan He,
  12. Hesam Moradinejad,
  13. John Clai Owens,
  14. Thomas Scaffidi,
  15. Patricio Arrangoiz-Arriola,
  16. Joe Iverson,
  17. Harry Levine,
  18. Fernando G.S.L. Brandão,
  19. Matthew H. Matheny,
  20. and Oskar Painter
Cat qubits, a type of bosonic qubit encoded in a harmonic oscillator, can exhibit an exponential noise bias against bit-flip errors with increasing mean photon number. Here, we focus
on cat qubits stabilized by two-photon dissipation, where pairs of photons are added and removed from a harmonic oscillator by an auxiliary, lossy buffer mode. This process requires a large loss rate and strong nonlinearities of the buffer mode that must not degrade the coherence and linearity of the oscillator. In this work, we show how to overcome this challenge by coloring the loss environment of the buffer mode with a multi-pole filter and optimizing the circuit to take into account additional inductances in the buffer mode. Using these techniques, we achieve near-ideal enhancement of cat-qubit bit-flip times with increasing photon number, reaching over 0.1 seconds with a mean photon number of only 4. Concurrently, our cat qubit remains highly phase coherent, with phase-flip times corresponding to an effective lifetime of T1,eff≃70 μs, comparable with the bare oscillator lifetime. We achieve this performance even in the presence of an ancilla transmon, used for reading out the cat qubit states, by engineering a tunable oscillator-ancilla dispersive coupling. Furthermore, the low nonlinearity of the harmonic oscillator mode allows us to perform pulsed cat-qubit stabilization, an important control primitive, where the stabilization can remain off for a significant fraction (e.g., two thirds) of a 3 μs cycle without degrading bit-flip times. These advances are important for the realization of scalable error-correction with cat qubits, where large noise bias and low phase-flip error rate enable the use of hardware-efficient outer error-correcting codes.

Microscopic Relaxation Channels in Materials for Superconducting Qubits

  1. Anjali Premkumar,
  2. Conan Weiland,
  3. Sooyeon Hwang,
  4. Berthold Jäck,
  5. Alexander P.M. Place,
  6. Iradwikanari Waluyo,
  7. Adrian Hunt,
  8. Valentina Bisogni,
  9. Jonathan Pelliciari,
  10. Andi Barbour,
  11. Mike S. Miller,
  12. Paola Russo,
  13. Fernando Camino,
  14. Kim Kisslinger,
  15. Xiao Tong,
  16. Mark S. Hybertsen,
  17. Andrew A. Houck,
  18. and Ignace Jarrige
Despite mounting evidence that materials imperfections are a major obstacle to practical applications of superconducting qubits, connections between microscopic material properties
and qubit coherence are poorly understood. Here, we perform measurements of transmon qubit relaxation times T1 in parallel with spectroscopy and microscopy of the thin polycrystalline niobium films used in qubit fabrication. By comparing results for films deposited using three techniques, we reveal correlations between T1 and grain size, enhanced oxygen diffusion along grain boundaries, and the concentration of suboxides near the surface. Physical mechanisms connect these microscopic properties to residual surface resistance and T1 through losses arising from the grain boundaries and from defects in the suboxides. Further, experiments show that the residual resistance ratio can be used as a figure of merit for qubit lifetime. This comprehensive approach to understanding qubit decoherence charts a pathway for materials-driven improvements of superconducting qubit performance.