Multipartite Entanglement in Rabi Driven Superconducting Qubits

  1. M. Lu,
  2. J. L. Ville,
  3. J. Cohen,
  4. A. Petrescu,
  5. S. Schreppler,
  6. L. Chen,
  7. C. Jüenger,
  8. C. Pelletti,
  9. A. Marchenkov,
  10. A. Banerjee,
  11. W. Livingston,
  12. J.M. Kreikebaum,
  13. D. Santiago,
  14. A. Blais,
  15. and I. Siddiqi
Exploring highly connected networks of qubits is invaluable for implementing various quantum algorithms and simulations as it allows for entangling qubits with reduced circuit depth.

Monitoring fast superconducting qubit dynamics using a neural network

  1. G. Koolstra,
  2. N. Stevenson,
  3. S. Barzili,
  4. L. Burns,
  5. K. Siva,
  6. S. Greenfield,
  7. W. Livingston,
  8. A. Hashim,
  9. R. K. Naik,
  10. J.M. Kreikebaum,
  11. K. P. O'Brien,
  12. D. I. Santiago,
  13. J. Dressel,
  14. and I. Siddiqi
Weak measurements of a superconducting qubit produce noisy voltage signals that are weakly correlated with the qubit state. To recover individual quantum trajectories from these noisy

Qutrit randomized benchmarking

  1. A. Morvan,
  2. V. V. Ramasesh,
  3. M. S. Blok,
  4. J.M. Kreikebaum,
  5. K. O'Brien,
  6. L. Chen,
  7. B. K. Mitchell,
  8. R. K. Naik,
  9. D. I. Santiago,
  10. and I. Siddiqi
Ternary quantum processors offer significant computational advantages over conventional qubit technologies, leveraging the encoding and processing of quantum information in qutrits

Quantum Information Scrambling in a Superconducting Qutrit Processor

  1. M. S. Blok,
  2. V. V. Ramasesh,
  3. T. Schuster,
  4. K. O'Brien,
  5. J.M. Kreikebaum,
  6. D. Dahlen,
  7. A. Morvan,
  8. B. Yoshida,
  9. N. Y. Yao,
  10. and I. Siddiqi
The theory of quantum information provides a common language which links disciplines ranging from cosmology to condensed-matter physics. For example, the delocalization of quantum information

Improving wafer-scale Josephson junction resistance variation in superconducting quantum coherent circuits

  1. J.M. Kreikebaum,
  2. K. P. O'Brien,
  3. and I. Siddiqi
Quantum bits, or qubits, are an example of coherent circuits envisioned for next-generation computers and detectors. A robust superconducting qubit with a coherent lifetime of O(100us) is the transmon: a Josephson junction functioning as a non-linear inductor shunted with a capacitor to form an anharmonic oscillator. In a complex device with many such transmons, precise control over each qubit frequency is often required, and thus variations of the junction area and tunnel barrier thickness must be sufficiently minimized to achieve optimal performance while avoiding spectral overlap between neighboring circuits. Simply transplanting our recipe optimized for single, stand-alone devices to wafer-scale (producing 64, 1×1 cm dies from a 150 mm wafer) initially resulted in global drifts in room-temperature tunneling resistance of ± 30%. Inferring a critical current Ic variation from this resistance distribution, we present an optimized process developed from a systematic 38 wafer study that results in < 3.5% relative standard deviation (RSD) in critical current (≡σIc/⟨Ic⟩) for 3000 Josephson junctions (both fixed frequency and asymmetric SQUIDs) across an area of 49 cm2. Looking within a 1x1 cm moving window across the substrate gives an estimate of the variation characteristic of a given qubit chip. Our best process, utilizing ultrasonically assisted development, uniform ashing, and dynamic oxidation has shown σIc/⟨Ic⟩ = 1.8% within 1x1 cm, on average, with a few 1x1 cm areas having σIc/⟨Ic⟩ < 1.0% (equivalent to σf/⟨f⟩ < 0.5%). Such stability would drastically improve the yield of multi-qubit chips with strict frequency requirements.[/expand]

High-efficiency measurement of an artificial atom embedded in a parametric amplifier

  1. A. Eddins,
  2. J.M. Kreikebaum,
  3. D.M. Toyli,
  4. E.M. Levenson-Falk,
  5. A. Dove,
  6. W.P. Livingston,
  7. B.A. Levitan,
  8. L. C. G. Govia,
  9. A. A. Clerk,
  10. and I. Siddiqi
A crucial limit to measurement efficiencies of superconducting circuits comes from losses involved when coupling to an external quantum amplifier. Here, we realize a device circumventing

Resonance fluorescence from an artificial atom in squeezed vacuum

  1. D.M. Toyli,
  2. A.W. Eddins,
  3. S. Boutin,
  4. S. Puri,
  5. D. Hover,
  6. V. Bolkhovsky,
  7. W. D. Oliver,
  8. A. Blais,
  9. and I. Siddiqi
We present an experimental realization of resonance fluorescence in squeezed vacuum. We strongly couple microwave-frequency squeezed light to a superconducting artificial atom and detect

Quantum Zeno effect in the strong measurement regime of circuit quantum electrodynamics

  1. D. H. Slichter,
  2. C. Müller,
  3. R. Vijay,
  4. S. J. Weber,
  5. A. Blais,
  6. and I. Siddiqi
We observe the quantum Zeno effect — where the act of measurement slows the rate of quantum state transitions — in a superconducting qubit using linear circuit quantum electrodynamics

Stabilizing entanglement via symmetry-selective bath engineering in superconducting qubits

  1. M. E. Schwartz,
  2. L. Martin,
  3. E. Flurin,
  4. C. Aron,
  5. M. Kulkarni,
  6. H. E. Tureci,
  7. and I. Siddiqi
Bath engineering, which utilizes coupling to lossy modes in a quantum system to generate non-trivial steady states, is a tantalizing alternative to gate- and measurement-based quantum

Weak Measurement and Feedback in Superconducting Quantum Circuits

  1. K. W. Murch,
  2. R. Vijay,
  3. and I. Siddiqi
We describe the implementation of weak quantum measurements in superconducting qubits, focusing specifically on transmon type devices in the circuit quantum electrodynamics architecture.