The superconducting transmon qubit is currently a leading qubit modality for quantum computing, but gate performance in quantum processor with transmons is often insufficient to supportrunning complex algorithms for practical applications. It is thus highly desirable to further improve gate performance. Due to the weak anharmonicity of transmon, a static ZZ interaction between coupled transmons commonly exists, undermining the gate performance, and in long term, it can become performance limiting. Here we theoretically explore a previously unexplored parameter region in an all-transmon system to address this issue. We show that an experimentally feasible parameter region, where the ZZ interaction is heavily suppressed while leaving XY interaction with an adequate strength to implement two-qubit gates, can be found in an all-transmon system. Thus, two-qubit gates, such as cross-resonance gate or iSWAP gate, can be realized without the detrimental effect from static ZZ interaction. To illustrate this, we show that an iSWAP gate with fast gate speed and dramatically lower conditional phase error can be achieved. Scaling up to large-scale transmon quantum processor, especially the cases with fixed coupling, addressing error, idling error, and crosstalk that arises from static ZZ interaction could also be heavily suppressed.
High fidelity two-qubit gates are fundamental for scaling up the superconducting number. We use two qubits coupled via a frequency-tunable coupler which can adjust the coupling strength,and demonstrate the CZ gate using two different schemes, adiabatic and di-adiabatic methods. The Clifford based Randomized Benchmarking (RB) method is used to assess and optimize the CZ gate fidelity. The fidelity of adiabatic and di-adiabatic CZ gates are 99.53(8)% and 98.72(2)%, respectively. We also analyze the errors induced by the decoherence, which are 92% of total for adiabatic CZ gate and 46% of total for di-adiabatic CZ gates. The adiabatic scheme is robust against the operation error. But the di-adiabatic scheme is sensitive to the purity and operation errors. Comparing to 30 ns duration time of adiabatic CZ gate, the duration time of di-adiabatic CZ gate is 19 ns, revealing lower incoherence error rincoherent,Clfford = 0.0197(5) than r′incoherent,Clfford = 0.0223(3).
For building a scalable quantum processor with superconducting qubits, the ZZ interaction is of great concert because of relevant for implementing two-qubit gates, and the close contactbetween gate infidelity and its residual. Two-qubit gates with fidelity beyond fault-tolerant thresholds have been demonstrated using the ZZ interaction. However, as the performance of quantum processor improves, the residual static-ZZ can also become a performance-limiting factor for quantum gate operations and quantum error correction. Here, we introduce a scalable superconducting architecture for addressing this challenge. We demonstrate that by coupling two superconducting qubits with opposite-sign anharmonicities together, high-contrast ZZ interaction can be realized in this architecture. Thus, we can control ZZ interaction with high on/off ratio for implementing two-qubit CZ gate, or suppress it during the two-qubit gate operations using XY interaction (e.g. iSWAP). Meanwhile, the ZZ crosstalk related to neighboring spectator qubits can also be heavily suppressed in fixed coupled multi-qubit systems. This architecture could provide a promising way towards scalable superconducting quantum processor with high gate fidelity and low qubit crosstalk.
Hopf-link semimetals exhibit exotic gapless band structures with fascinating topological properties, which have never been observed in nature. Here we demonstrated nodal lines withtopological form of Hopf-link chain in artificial semimetal-bands. Driving superconducting quantum circuits with elaborately designed microwave fields, we mapped the momentum space of a lattice to the parameter space, realizing the Hamiltonian of a Hopf-link semimetal. By measuring the energy spectrum, we directly imaged nodal lines in cubic lattices. By tuning the driving fields we adjusted various parameters of Hamiltonian. Important topological features, such as link-unlink topological transition and the robustness of Hopf-link chain structure are investigated. Moreover, we extracted linking number by detecting Berry phase associated with different loops enclosing or disclosing nodal lines. The topological invariant clearly reveals the scenery of the connection between two nodal rings. Our simulations provide foremost knowledge for developing new materials and quantum devices.
We propose a realizable circuit QED architecture for engineering states of a superconducting resonator off-resonantly coupled to an ancillary superconducting qubit. The qubit-resonatordispersive interaction together with a microwave drive applied to the qubit gives rise to a Kerr resonator with two-photon driving that enables us to efficiently engineer the quantum state of the resonator such as generation of the Schrodinger cat states for resonator-based universal quantum computation. Moreover, the presented architecture is easily scalable for solving optimization problem mapped into the Ising spin glass model, and thus served as a platform for quantum annealing. Although various scalable architecture with superconducting qubits have been proposed for realizing quantum annealer, the existing annealers are currently limited to the coherent time of the qubits. Here, based on the protocol for realizing two-photon driven Kerr resonator in three-dimensional circuit QED (3D cQED), we propose a flexible and scalable hardware for implementing quantum annealer that combines the advantage of the long coherence times attainable in 3D cQED and the recently proposed resonator based Lechner-Hauke-Zoller (LHZ) scheme. In the proposed resonator based LHZ annealer, each spin is encoded in the subspace formed by two coherent state of 3D microwave superconducting resonator with opposite phase, and thus the fully-connected Ising model is mapped onto the network of the resonator with local tunable three-resonator interaction. This hardware architecture provides a promising physical platform for realizing quantum annealer with improved coherence.
We present a model to describe a generic circuit QED system which consists of multiple artificial three-level atoms, namely qutrits, strongly coupled to a cavity mode. When the statetransition of the atoms disobey the selection rules the process that does not conserve the number of excitations can happen determinatively. Therefore, we can realize coherent exchange interaction among three or more atoms mediated by the exchange of virtual photons. In addition, we generalize the one cavity mode mediated interactions to the multi-cavity situation, providing a method to entangle atoms located in different cavities. Using experimental feasible parameters, we investigate the dynamics of the model including three cyclic-transition three-level atoms, for which the two lowest-energy levels can be treated as qubits. Hence, we have found that two qubits can jointly exchange excitation with one qubit in a coherent and reversible way. In the whole process, the population in the third level of atoms is negligible and the cavity photon number is far smaller than 1. Our model provides a feasible scheme to couple multiple distant atoms together, which may find applications in quantum information processing.
Using a multi-layered printed circuit board, we propose a 3D architecture suitable for packaging supercon- ducting chips, especially chips that contain two-dimensional qubit arrays.In our proposed architecture, the center strips of the buried coplanar waveguides protrude from the surface of a dielectric layer as contacts. Since the contacts extend beyond the surface of the dielectric layer, chips can simply be flip-chip packaged with on-chip receptacles clinging to the contacts. Using this scheme, we packaged a multi-qubit chip and per- formed single-qubit and two-qubit quantum gate operations. The results indicate that this 3D architecture provides a promising scheme for scalable quantum computing.
We have experimentally realized novel space-time inversion (P-T) invariant Z2-type topological semimetal-bands, via an analogy between the momentum space and a controllable parameterspace in superconducting quantum circuits. By measuring the whole energy spectrum of system, we imaged clearly an exotic tunable gapless band structure of topological semimetals. Two topological quantum phase transitions from a topological semimetal to two kinds of insulators can be manipulated by continuously tuning the different parameters in the experimental setup, one of which captures the Z2 topology of the PT semimetal via merging a pair of nontrivial Z2 Dirac points. Remarkably, the topological robustness was demonstrated unambiguously, by adding a perturbation that breaks only the individual T and P symmetries but keeps the joint PT symmetry. In contrast, when another kind of PT -violated perturbation is introduced, a topologically trivial insulator gap is fully opened.
By driving a 3D transmon with microwave fields, we generate an effective avoided energy-level crossing. Then we chirp microwave frequency, which is equivalent to driving the systemthrough the avoided energy-level crossing by sweeping the avoided crossing. A double-passage chirp produces Landau-Zener-St\“uckelberg-Majorana interference that agree well with the numerical results. Our method is fully applicable to other quantum systems that contain no intrinsic avoided level crossing, providing an alternative approach for quantum control and quantum simulation.