High-contrast ZZ interaction using multi-type superconducting qubits

  1. Peng Zhao,
  2. Peng Xu,
  3. Dong Lan,
  4. Xinsheng Tan,
  5. Haifeng Yu,
  6. and Yang Yu
For building a scalable quantum processor with superconducting qubits, the ZZ interaction is of great concert because of relevant for implementing two-qubit gates, and the close contact between gate infidelity and its residual. Two-qubit gates with fidelity beyond fault-tolerant thresholds have been demonstrated using the ZZ interaction. However, as the performance of quantum processor improves, the residual static-ZZ can also become a performance-limiting factor for quantum gate operations and quantum error correction. Here, we introduce a scalable superconducting architecture for addressing this challenge. We demonstrate that by coupling two superconducting qubits with opposite-sign anharmonicities together, high-contrast ZZ interaction can be realized in this architecture. Thus, we can control ZZ interaction with high on/off ratio for implementing two-qubit CZ gate, or suppress it during the two-qubit gate operations using XY interaction (e.g. iSWAP). Meanwhile, the ZZ crosstalk related to neighboring spectator qubits can also be heavily suppressed in fixed coupled multi-qubit systems. This architecture could provide a promising way towards scalable superconducting quantum processor with high gate fidelity and low qubit crosstalk.

leave comment