Quantum computation with bosonic modes presents a powerful paradigm for harnessing the principles of quantum mechanics to perform complex information processing tasks. In constructinga bosonic qubit with superconducting circuits, nonlinearity is typically introduced to a cavity mode through an ancillary two-level qubit. However, the ancilla’s spurious heating has impeded progress towards fully fault-tolerant bosonic qubits. The ability to in-situ decouple the ancilla when not in use would be beneficial but has not been realized yet. This work presents a novel architecture for quantum information processing, comprising a 3D post cavity coupled to a fluxonium ancilla via a readout resonator. This system’s intricate energy level structure results in a complex landscape of interactions whose sign can be tuned in situ by the magnetic field threading the fluxonium loop. Our results could significantly advance the lifetime and controllability of bosonic qubits.
We report a proof-of-principle experiment for a new method of temperature measurements in waveguide quantum electrodynamics (wQED) experiments, allowing one to differentiate betweenglobal and local baths. The method takes advantage of collective states of two transmon qubits located in the center of a waveguide. The Hilbert space of such a system forms two separate subspaces (bright and dark) which are coupled differently to external noise sources. Measuring transmission through the waveguide allows one to extract separately the temperatures of the baths responsible for global and local excitations in the system. Such a system would allow for building a new type of primary temperature sensor capable of distinguishing between local and global baths.
The observation of quantum phenomena often necessitates sufficiently pure states, a requirement that can be challenging to achieve. In this study, our goal is to prepare a non-classicalstate originating from a mixed state, utilizing dynamics that preserve the initial low purity of the state. We generate a quantum superposition of displaced thermal states within a microwave cavity using only unitary interactions with a transmon qubit. We measure the Wigner functions of these „hot“ Schrödinger cat states for an initial purity as low as 0.06. This corresponds to a cavity mode temperature of up to 1.8 Kelvin, sixty times hotter than the cavity’s physical environment. Our realization of highly mixed quantum superposition states could be implemented with other continuous-variable systems e.g. nanomechanical oscillators, for which ground-state cooling remains challenging.
Multiple atoms coherently interacting with an electromagnetic mode give rise to collective effects such as correlated decay and coherent exchange interaction, depending on the separationof the atoms. By diagonalizing the effective non-Hermitian many-body Hamiltonian we reveal the complex-valued eigenvalue spectrum encoding the decay and interaction characteristics. We show that there are significant differences in the emerging effects for an array of interacting anharmonic oscillators compared to those of two-level systems and harmonic oscillators. The bosonic decay rate of the most superradiant state increases linearly as a function of the filling factor and exceeds that of two-level systems in magnitude. Furthermore, with bosonic systems, dark states are formed at each filling factor. These are in strong contrast with two-level systems, where the maximal superradiance is observed at half filling and with larger filling factors superradiance diminishes and no dark states are formed. As an experimentally relevant setup of bosonic waveguide QED, we focus on arrays of transmon devices embedded inside a rectangular waveguide. Specifically, we study the setup of two transmon pairs realized experimentally in M. Zanner et al., arXiv.2106.05623 (2021), and show that it is necessary to consider transmons as bosonic multilevel emitters to accurately recover correct collective effects for the higher excitation manifolds.
Quantum information is typically encoded in the state of a qubit that is decoupled from the environment. In contrast, waveguide quantum electrodynamics studies qubits coupled to a modecontinuum, exposing them to a loss channel and causing quantum information to be lost before coherent operations can be performed. Here we restore coherence by realizing a dark state that exploits symmetry properties and interactions between four qubits. Dark states decouple from the waveguide and are thus a valuable resource for quantum information but also come with a challenge: they cannot be controlled by the waveguide drive. We overcome this problem by designing a drive that utilizes the symmetry properties of the collective state manifold allowing us to selectively drive both bright and dark states. The decay time of the dark state exceeds that of the waveguide-limited single qubit by more than two orders of magnitude. Spectroscopy on the second excitation manifold provides further insight into the level structure of the hybridized system. Our experiment paves the way for implementations of quantum many-body physics in waveguides and the realization of quantum information protocols using decoherence-free subspaces.
Superconducting qubits are a leading platform for scalable quantum computing and quantum error correction. One feature of this platform is the ability to perform projective measurementsorders of magnitude more quickly than qubit decoherence times. Such measurements are enabled by the use of quantum-limited parametric amplifiers in conjunction with ferrite circulators – magnetic devices which provide isolation from noise and decoherence due to amplifier backaction. Because these non-reciprocal elements have limited performance and are not easily integrated on-chip, it has been a longstanding goal to replace them with a scalable alternative. Here, we demonstrate a solution to this problem by using a superconducting switch to control the coupling between a qubit and amplifier. Doing so, we measure a transmon qubit using a single, chip-scale device to provide both parametric amplification and isolation from the bulk of amplifier backaction. This measurement is also fast, high fidelity, and has 70% efficiency, comparable to the best that has been reported in any superconducting qubit measurement. As such, this work constitutes a high-quality platform for the scalable measurement of superconducting qubits.
Coherent controlization, i.e., coherent conditioning of arbitrary single- or multi-qubit operations on the state of one or more control qubits, is an important ingredient for the flexibleimplementation of many algorithms in quantum computation. This is of particular significance when certain subroutines are changing over time or when they are frequently modified, such as in decision-making algorithms for learning agents. We propose a scheme to realize coherent controlization for any number of superconducting qubits coupled to a microwave resonator. For two and three qubits, we present an explicit construction that is of high relevance for quantum learning agents. We demonstrate the feasibility of our proposal, taking into account loss, dephasing, and the cavity self-Kerr effect.
We show that the inductive coupling between the quantum mechanical motion of a superconducting microcantilever and a flux-dependent microwave quantum circuit can attain the strong single-photonnanomechanical coupling regime with feasible experimental parameters. We propose to use a superconducting strip, which is in the Meissner state, at the tip of a cantilever. A pick-up coil collects the flux generated by the sheet currents induced by an external quadrupole magnetic field centered at the strip location. The position-dependent magnetic response of the superconducting strip, enhanced by both diamagnetism and demagnetizing effects, leads to a strong magnetomechanical coupling to quantum circuits.
Photons are ideal carriers for quantum information as they can have a long
coherence time and can be transmitted over long distances. These properties are
a consequence of their weakinteractions within a nearly linear medium. To
create and manipulate nonclassical states of light, however, one requires a
strong, nonlinear interaction at the single photon level. One approach to
generate suitable interactions is to couple photons to atoms, as in the strong
coupling regime of cavity QED systems. In these systems, however, one only
indirectly controls the quantum state of the light by manipulating the atoms. A
direct photon-photon interaction occurs in so-called Kerr media, which
typically induce only weak nonlinearity at the cost of significant loss. So
far, it has not been possible to reach the single-photon Kerr regime, where the
interaction strength between individual photons exceeds the loss rate. Here,
using a 3D circuit QED architecture, we engineer an artificial Kerr medium
which enters this regime and allows the observation of new quantum effects. We
realize a Gedankenexperiment proposed by Yurke and Stoler, in which the
collapse and revival of a coherent state can be observed. This time evolution
is a consequence of the quantization of the light field in the cavity and the
nonlinear interaction between individual photons. During this evolution
non-classical superpositions of coherent states, i.e. multi-component
Schroedinger cat states, are formed. We visualize this evolution by measuring
the Husimi Q-function and confirm the non-classical properties of these
transient states by Wigner tomography. The single-photon Kerr effect could be
employed in QND measurement of photons, single photon generation, autonomous
quantum feedback schemes and quantum logic operations.
We present a semi-classical method for determining the effective low-energy
quantum Hamiltonian of weakly anharmonic superconducting circuits containing
mesoscopic Josephson junctionscoupled to electromagnetic environments made of
an arbitrary combination of distributed and lumped elements. A convenient
basis, capturing the multi-mode physics, is given by the quantized eigenmodes
of the linearized circuit and is fully determined by a classical linear
response function. The method is used to calculate numerically the low-energy
spectrum of a 3D-transmon system, and quantitative agreement with measurements
is found.