A foundational assumption of quantum error correction theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance. Two majorchallenges that could become fundamental roadblocks are manufacturing high performance quantum hardware and engineering a control system that can reach its performance limits. The control challenge of scaling quantum gates from small to large processors without degrading performance often maps to non-convex, high-constraint, and time-dependent control optimization over an exponentially expanding configuration space. Here we report on a control optimization strategy that can scalably overcome the complexity of such problems. We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunable superconducting qubits to execute single- and two-qubit gates while mitigating computational errors. When combined with a comprehensive model of physical errors across our processor, the strategy suppresses physical error rates by ∼3.7× compared with the case of no optimization. Furthermore, it is projected to achieve a similar performance advantage on a distance-23 surface code logical qubit with 1057 physical qubits. Our control optimization strategy solves a generic scaling challenge in a way that can be adapted to other quantum algorithms, operations, and computing architectures.
Superconducting qubits typically use a dispersive readout scheme, where a resonator is coupled to a qubit such that its frequency is qubit-state dependent. Measurement is performedby driving the resonator, where the transmitted resonator field yields information about the resonator frequency and thus the qubit state. Ideally, we could use arbitrarily strong resonator drives to achieve a target signal-to-noise ratio in the shortest possible time. However, experiments have shown that when the average resonator photon number exceeds a certain threshold, the qubit is excited out of its computational subspace, which we refer to as a measurement-induced state transition. These transitions degrade readout fidelity, and constitute leakage which precludes further operation of the qubit in, for example, error correction. Here we study these transitions using a transmon qubit by experimentally measuring their dependence on qubit frequency, average photon number, and qubit state, in the regime where the resonator frequency is lower than the qubit frequency. We observe signatures of resonant transitions between levels in the coupled qubit-resonator system that exhibit noisy behavior when measured repeatedly in time. We provide a semi-classical model of these transitions based on the rotating wave approximation and use it to predict the onset of state transitions in our experiments. Our results suggest the transmon is excited to levels near the top of its cosine potential following a state transition, where the charge dispersion of higher transmon levels explains the observed noisy behavior of state transitions. Moreover, occupation in these higher energy levels poses a major challenge for fast qubit reset.
We demonstrate a high dynamic range Josephson parametric amplifier (JPA) in which the active nonlinear element is implemented using an array of rf-SQUIDs. The device is matched to the50 Ω environment with a Klopfenstein-taper impedance transformer and achieves a bandwidth of 250-300 MHz, with input saturation powers up to -95 dBm at 20 dB gain. A 54-qubit Sycamore processor was used to benchmark these devices, providing a calibration for readout power, an estimate of amplifier added noise, and a platform for comparison against standard impedance matched parametric amplifiers with a single dc-SQUID. We find that the high power rf-SQUID array design has no adverse effect on system noise, readout fidelity, or qubit dephasing, and we estimate an upper bound on amplifier added noise at 1.6 times the quantum limit. Lastly, amplifiers with this design show no degradation in readout fidelity due to gain compression, which can occur in multi-tone multiplexed readout with traditional JPAs.
Scalable quantum computing can become a reality with error correction, provided coherent qubits can be constructed in large arrays. The key premise is that physical errors can remainboth small and sufficiently uncorrelated as devices scale, so that logical error rates can be exponentially suppressed. However, energetic impacts from cosmic rays and latent radioactivity violate both of these assumptions. An impinging particle ionizes the substrate, radiating high energy phonons that induce a burst of quasiparticles, destroying qubit coherence throughout the device. High-energy radiation has been identified as a source of error in pilot superconducting quantum devices, but lacking a measurement technique able to resolve a single event in detail, the effect on large scale algorithms and error correction in particular remains an open question. Elucidating the physics involved requires operating large numbers of qubits at the same rapid timescales as in error correction, exposing the event’s evolution in time and spread in space. Here, we directly observe high-energy rays impacting a large-scale quantum processor. We introduce a rapid space and time-multiplexed measurement method and identify large bursts of quasiparticles that simultaneously and severely limit the energy coherence of all qubits, causing chip-wide failure. We track the events from their initial localised impact to high error rates across the chip. Our results provide direct insights into the scale and dynamics of these damaging error bursts in large-scale devices, and highlight the necessity of mitigation to enable quantum computing to scale.
Two-level-system (TLS) defects in amorphous dielectrics are a major source of noise and decoherence in solid-state qubits. Gate-dependent non-Markovian errors caused by TLS-qubit couplingare detrimental to fault-tolerant quantum computation and have not been rigorously treated in the existing literature. In this work, we derive the non-Markovian dynamics between TLS and qubits during a SWAP-like two-qubit gate and the associated average gate fidelity for frequency-tunable Transmon qubits. This gate dependent error model facilitates using qubits as sensors to simultaneously learn practical imperfections in both the qubit’s environment and control waveforms. We combine the-state-of-art machine learning algorithm with Moiré-enhanced swap spectroscopy to achieve robust learning using noisy experimental data. Deep neural networks are used to represent the functional map from experimental data to TLS parameters and are trained through an evolutionary algorithm. Our method achieves the highest learning efficiency and robustness against experimental imperfections to-date, representing an important step towards in-situ quantum control optimization over environmental and control defects.
Future quantum computing systems will require cryogenic integrated circuits to control and measure millions of qubits. In this paper, we report the design and characterization of aprototype cryogenic CMOS integrated circuit that has been optimized for the control of transmon qubits. The circuit has been integrated into a quantum measurement setup and its performance has been validated through multiple quantum control experiments.
For a variety of superconducting qubits, tunable interactions are achieved through mutual inductive coupling to a coupler circuit containing a nonlinear Josephson element. In this paperwe derive the general interaction mediated by such a circuit under the Born-Oppenheimer approximation. This interaction naturally decomposes into a classical part with origin in the classical circuit equations and a quantum part associated with the zero-point energy of the coupler. Our result is non-perturbative in the qubit-coupler coupling strengths and circuit nonlinearities, leading to significant departures from previous treatments in the nonlinear or strong coupling regimes. Specifically, it displays no divergences for large coupler nonlinearities, and it can predict k-body and non-stoquastic interactions that are absent in linear theories. Our analysis provides explicit and efficiently computable series for any term in the interaction Hamiltonian and can be applied to any superconducting qubit type.