Correlated errors in superconducting circuits due to nonequilibrium quasiparticles are a notable concern in efforts to achieve fault tolerant quantum computing. The propagation of quasiparticlescausing these correlated errors can potentially be mediated by phonons in the substrate. Therefore, methods that decouple devices from the substrate are possible solutions, such as isolating devices atop SiN membranes. In this work, we validate the compatibility of SiN membrane technology with high quality superconducting circuits, adding the technique to the community’s fabrication toolbox. We do so by fabricating superconducting coplanar waveguide resonators entirely atop a thin (∼110 nm) SiN layer, where the bulk Si originally supporting it has been etched away, achieving a suspended membrane where the shortest length to its thickness yields an aspect ratio of approximately 7.4×103. We compare these membrane resonators to on-substrate resonators on the same chip, finding similar internal quality factors ∼105 at single photon levels. Furthermore, we confirm that these membranes do not adversely affect the resonator thermalization rate. With these important benchmarks validated, this technique can be extended to qubits.
As superconducting quantum processors increase in complexity, techniques to overcome constraints on frequency crowding are needed. The recently developed method of laser-annealing providesan effective post-fabrication method to adjust the frequency of superconducting qubits. Here, we present an automated laser-annealing apparatus based on conventional microscopy components and demonstrate preservation of highly coherent transmons. In one case, we observe a two-fold increase in coherence after laser-annealing and perform noise spectroscopy on this qubit to investigate the change in defect features, in particular two-level system defects. Finally, we present a local heating model as well as demonstrate aging stability for laser-annealing on the wafer scale. Our work constitutes an important first step towards both understanding the underlying physical mechanism and scaling up laser-annealing of superconducting qubits.
Quantum sensing and computation can be realized with superconducting microwave circuits. Qubits are engineered quantum systems of capacitors and inductors with non-linear Josephsonjunctions. They operate in the single-excitation quantum regime, photons of 27μeV at 6.5 GHz. Quantum coherence is fundamentally limited by materials defects, in particular atomic-scale parasitic two-level systems (TLS) in amorphous dielectrics at circuit interfaces.[1] The electric fields driving oscillating charges in quantum circuits resonantly couple to TLS, producing phase noise and dissipation. We use coplanar niobium-on-silicon superconducting resonators to probe decoherence in quantum circuits. By selectively modifying interface dielectrics, we show that most TLS losses come from the silicon surface oxide, and most non-TLS losses are distributed throughout the niobium surface oxide. Through post-fabrication interface modification we reduced TLS losses by 85% and non-TLS losses by 72%, obtaining record single-photon resonator quality factors above 5 million and approaching a regime where non-TLS losses are dominant.
[1]Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019)